Deficient topological measures and functionals generated by them
Sbornik. Mathematics, Tome 204 (2013) no. 5, pp. 726-761 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper looks at the properties of deficient topological measures, which are a generalization of topological measures. Integration of a real function that is continuous on a compact set with respect to a deficient topological measure is also investigated. The notions of $r$- and $l$-functionals are introduced and an analogue of the Riesz representation theorem is obtained for them. As corollaries, both well-known and new results for quasi-integrals and topological measures are presented (for example, a new version of the definition of a quasi-integral). Bibliography: 16 titles.
Keywords: deficient topological measure, topological measure, $r$- and $l$-functionals, quasi-integral, Riesz representation theorem.
@article{SM_2013_204_5_a4,
     author = {M. G. Svistula},
     title = {Deficient topological measures and functionals generated by them},
     journal = {Sbornik. Mathematics},
     pages = {726--761},
     year = {2013},
     volume = {204},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_5_a4/}
}
TY  - JOUR
AU  - M. G. Svistula
TI  - Deficient topological measures and functionals generated by them
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 726
EP  - 761
VL  - 204
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_5_a4/
LA  - en
ID  - SM_2013_204_5_a4
ER  - 
%0 Journal Article
%A M. G. Svistula
%T Deficient topological measures and functionals generated by them
%J Sbornik. Mathematics
%D 2013
%P 726-761
%V 204
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2013_204_5_a4/
%G en
%F SM_2013_204_5_a4
M. G. Svistula. Deficient topological measures and functionals generated by them. Sbornik. Mathematics, Tome 204 (2013) no. 5, pp. 726-761. http://geodesic.mathdoc.fr/item/SM_2013_204_5_a4/

[1] J. F. Aarnes, “Quasi-states and quasi-measures”, Adv. Math., 86:1 (1991), 41–67 | DOI | MR | Zbl

[2] O. Johansen, A. B. Rustad, “Construction and properties of quasi-linear functionals”, Trans. Amer. Math. Soc., 358:6 (2006), 2735–2758 | DOI | MR | Zbl

[3] M. G. Svistula, “Razlozhenie obobschennoi kvazimery”, Vestnik SamGU, 62:3 (2008), 192–207 | MR

[4] R. Engelking, Obschaya topologiya, Mir, M., 1986 ; R. Engelking, General topology, PWN, Warsaw, 1977 | MR | MR | Zbl

[5] P. R. Halmos, Measure theory, Van Nostrand, New York, 1950 | MR | MR | Zbl

[6] K. P. S. Bhaskara Rao, M. Bhaskara Rao, Theory of charges. A study of finitely additive measures, Pure Appl. Math., 109, Academic Press, New York–London, 1983 | MR | Zbl

[7] H. König, Measure and integration. An advanced course in basic procedures and applications, Springer-Verlag, Berlin, 1997 | MR | Zbl

[8] J. F. Aarnes, “Construction of non-subadditive measures and discretization of Borel measures”, Fund. Math., 147:3 (1995), 213–237 | MR | Zbl

[9] D. J. Grubb, T. LaBerge, “Additivity of quasi-measures”, Proc. Amer. Math. Soc., 126:10 (1998), 3007–3012 | DOI | MR | Zbl

[10] S. V. Butler, “Density in the space of topological measures”, Fund. Math., 174:3 (2002), 239–251 | DOI | MR | Zbl

[11] T. LaBerge, “Supports of quasi-measures”, Houston J. Math., 24:2 (1998), 301–312 | MR | Zbl

[12] M. G. Svistula, “Proper quasi-measure criterion”, Math. Notes, 81:5 (2007), 671–680 | DOI | DOI | MR | Zbl

[13] V. I. Bogachev, Measure theory, v. 2, Springer-Verlag, Berlin, 2007 | MR | Zbl

[14] K. R. Parthasarathy, Introduction to probability and measure, Macmillan, Delhi, 1977 | MR | MR | Zbl | Zbl

[15] D. J. Grubb, “Signed quasi-measures”, Trans. Amer. Math. Soc., 349:3 (1997), 1081–1089 | DOI | MR | Zbl

[16] D. J. Grubb, “Irreducible partitions and the construction of quasi-measures”, Trans. Amer. Math. Soc., 353:5 (2001), 2059–2072 | DOI | MR | Zbl