The most rapid possible growth of the maximum modulus of a~canonical product of noninteger order with a~prescribed majorant of the counting function of zeros
Sbornik. Mathematics, Tome 204 (2013) no. 5, pp. 683-725
Voir la notice de l'article provenant de la source Math-Net.Ru
Asymptotically sharp estimates for the logarithm of the maximum modulus of a canonical product are obtained in the case when the counting function of zeros has a prescribed majorant, while the arguments of the
zeros can be arbitrary.
Bibliography: 9 titles.
Keywords:
entire function of finite order, proximate order, canonical product, maximum modulus of an entire function.
@article{SM_2013_204_5_a3,
author = {A. Yu. Popov},
title = {The most rapid possible growth of the maximum modulus of a~canonical product of noninteger order with a~prescribed majorant of the counting function of zeros},
journal = {Sbornik. Mathematics},
pages = {683--725},
publisher = {mathdoc},
volume = {204},
number = {5},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_5_a3/}
}
TY - JOUR AU - A. Yu. Popov TI - The most rapid possible growth of the maximum modulus of a~canonical product of noninteger order with a~prescribed majorant of the counting function of zeros JO - Sbornik. Mathematics PY - 2013 SP - 683 EP - 725 VL - 204 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2013_204_5_a3/ LA - en ID - SM_2013_204_5_a3 ER -
%0 Journal Article %A A. Yu. Popov %T The most rapid possible growth of the maximum modulus of a~canonical product of noninteger order with a~prescribed majorant of the counting function of zeros %J Sbornik. Mathematics %D 2013 %P 683-725 %V 204 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2013_204_5_a3/ %G en %F SM_2013_204_5_a3
A. Yu. Popov. The most rapid possible growth of the maximum modulus of a~canonical product of noninteger order with a~prescribed majorant of the counting function of zeros. Sbornik. Mathematics, Tome 204 (2013) no. 5, pp. 683-725. http://geodesic.mathdoc.fr/item/SM_2013_204_5_a3/