The most rapid possible growth of the maximum modulus of a~canonical product of noninteger order with a~prescribed majorant of the counting function of zeros
Sbornik. Mathematics, Tome 204 (2013) no. 5, pp. 683-725

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotically sharp estimates for the logarithm of the maximum modulus of a canonical product are obtained in the case when the counting function of zeros has a prescribed majorant, while the arguments of the zeros can be arbitrary. Bibliography: 9 titles.
Keywords: entire function of finite order, proximate order, canonical product, maximum modulus of an entire function.
@article{SM_2013_204_5_a3,
     author = {A. Yu. Popov},
     title = {The most rapid possible growth of the maximum modulus of a~canonical product of noninteger order with a~prescribed majorant of the counting function of zeros},
     journal = {Sbornik. Mathematics},
     pages = {683--725},
     publisher = {mathdoc},
     volume = {204},
     number = {5},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_5_a3/}
}
TY  - JOUR
AU  - A. Yu. Popov
TI  - The most rapid possible growth of the maximum modulus of a~canonical product of noninteger order with a~prescribed majorant of the counting function of zeros
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 683
EP  - 725
VL  - 204
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_5_a3/
LA  - en
ID  - SM_2013_204_5_a3
ER  - 
%0 Journal Article
%A A. Yu. Popov
%T The most rapid possible growth of the maximum modulus of a~canonical product of noninteger order with a~prescribed majorant of the counting function of zeros
%J Sbornik. Mathematics
%D 2013
%P 683-725
%V 204
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_5_a3/
%G en
%F SM_2013_204_5_a3
A. Yu. Popov. The most rapid possible growth of the maximum modulus of a~canonical product of noninteger order with a~prescribed majorant of the counting function of zeros. Sbornik. Mathematics, Tome 204 (2013) no. 5, pp. 683-725. http://geodesic.mathdoc.fr/item/SM_2013_204_5_a3/