Hyperbolic tori in Hamiltonian systems with slowly varying parameter
Sbornik. Mathematics, Tome 204 (2013) no. 5, pp. 661-682

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper looks at a Hamiltonian system which depends periodically on a parameter. For each value of the parameter the system is assumed to have a hyperbolic periodic solution. Using the methods in KAM-theory it is proved that if the Hamiltonian is perturbed so that the value of the parameter varies with constant small frequency, then the nonautonomous system will have hyperbolic 2-tori in the extended phase space. Bibliography: 12 titles.
Keywords: KAM-theory, hyperbolic tori, fast-slow systems.
@article{SM_2013_204_5_a2,
     author = {A. G. Medvedev},
     title = {Hyperbolic tori in {Hamiltonian} systems with slowly varying parameter},
     journal = {Sbornik. Mathematics},
     pages = {661--682},
     publisher = {mathdoc},
     volume = {204},
     number = {5},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_5_a2/}
}
TY  - JOUR
AU  - A. G. Medvedev
TI  - Hyperbolic tori in Hamiltonian systems with slowly varying parameter
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 661
EP  - 682
VL  - 204
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_5_a2/
LA  - en
ID  - SM_2013_204_5_a2
ER  - 
%0 Journal Article
%A A. G. Medvedev
%T Hyperbolic tori in Hamiltonian systems with slowly varying parameter
%J Sbornik. Mathematics
%D 2013
%P 661-682
%V 204
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_5_a2/
%G en
%F SM_2013_204_5_a2
A. G. Medvedev. Hyperbolic tori in Hamiltonian systems with slowly varying parameter. Sbornik. Mathematics, Tome 204 (2013) no. 5, pp. 661-682. http://geodesic.mathdoc.fr/item/SM_2013_204_5_a2/