Existence of a Lipschitz selection of the Chebyshev-centre map
Sbornik. Mathematics, Tome 204 (2013) no. 5, pp. 641-660 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the existence of a Lipschitz selection for the operator $T_C$ (the Chebyshev-centre map) that assigns to any bounded subset $M$ of a Banach space $X$ the set $T_C(M)$ of its Chebyshev centres. It is proved that if the unit sphere $S(X)$ of $X$ has an exposed smooth point, then $T_C$ does not have a Lipschitz selection. It is also proved that if $X$ is finite dimensional the operator $T_C$ has a Lipschitz selection if and only if $X$ is polyhedral. The operator $T_C$ is also shown to have a Lipschitz selection in the space $\mathbf c_0(K)$ and $\mathbf c$-spaces. Bibliography: 4 titles.
Keywords: Chebyshev centre, Lipschitz selection, metric projection.
@article{SM_2013_204_5_a1,
     author = {Yu. Yu. Druzhinin},
     title = {Existence of {a~Lipschitz} selection of the {Chebyshev-centre} map},
     journal = {Sbornik. Mathematics},
     pages = {641--660},
     year = {2013},
     volume = {204},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_5_a1/}
}
TY  - JOUR
AU  - Yu. Yu. Druzhinin
TI  - Existence of a Lipschitz selection of the Chebyshev-centre map
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 641
EP  - 660
VL  - 204
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_5_a1/
LA  - en
ID  - SM_2013_204_5_a1
ER  - 
%0 Journal Article
%A Yu. Yu. Druzhinin
%T Existence of a Lipschitz selection of the Chebyshev-centre map
%J Sbornik. Mathematics
%D 2013
%P 641-660
%V 204
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2013_204_5_a1/
%G en
%F SM_2013_204_5_a1
Yu. Yu. Druzhinin. Existence of a Lipschitz selection of the Chebyshev-centre map. Sbornik. Mathematics, Tome 204 (2013) no. 5, pp. 641-660. http://geodesic.mathdoc.fr/item/SM_2013_204_5_a1/

[1] A. L. Garkavi, “O chebyshevskom tsentre mnozhestva v normirovannom prostranstve”, Issled. po sovrem. probl. konstruktivn. teorii funktsii, Fizmatgiz, M., 1961, 328–331 | MR | Zbl

[2] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, 1-e izd., Fizmatlit, M., 2004; 2-е изд., испр и доп.; Физматлит, М., 2007 | Zbl

[3] V. N. Zamyatin, M. I. Kadets, “Chebyshevskie tsentry v prostranstve $C[a,b]$”, Teor. funktsii, funktsion. analiz i prilozh., 7 (1968), 20–26 | MR | Zbl

[4] K. Leichtweiss, Konvexe Mengen, VEB, Berlin, 1980 | MR | MR | Zbl | Zbl