Existence of a~Lipschitz selection of the Chebyshev-centre map
Sbornik. Mathematics, Tome 204 (2013) no. 5, pp. 641-660

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with the existence of a Lipschitz selection for the operator $T_C$ (the Chebyshev-centre map) that assigns to any bounded subset $M$ of a Banach space $X$ the set $T_C(M)$ of its Chebyshev centres. It is proved that if the unit sphere $S(X)$ of $X$ has an exposed smooth point, then $T_C$ does not have a Lipschitz selection. It is also proved that if $X$ is finite dimensional the operator $T_C$ has a Lipschitz selection if and only if $X$ is polyhedral. The operator $T_C$ is also shown to have a Lipschitz selection in the space $\mathbf c_0(K)$ and $\mathbf c$-spaces. Bibliography: 4 titles.
Keywords: Chebyshev centre, Lipschitz selection, metric projection.
@article{SM_2013_204_5_a1,
     author = {Yu. Yu. Druzhinin},
     title = {Existence of {a~Lipschitz} selection of the {Chebyshev-centre} map},
     journal = {Sbornik. Mathematics},
     pages = {641--660},
     publisher = {mathdoc},
     volume = {204},
     number = {5},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_5_a1/}
}
TY  - JOUR
AU  - Yu. Yu. Druzhinin
TI  - Existence of a~Lipschitz selection of the Chebyshev-centre map
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 641
EP  - 660
VL  - 204
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_5_a1/
LA  - en
ID  - SM_2013_204_5_a1
ER  - 
%0 Journal Article
%A Yu. Yu. Druzhinin
%T Existence of a~Lipschitz selection of the Chebyshev-centre map
%J Sbornik. Mathematics
%D 2013
%P 641-660
%V 204
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_5_a1/
%G en
%F SM_2013_204_5_a1
Yu. Yu. Druzhinin. Existence of a~Lipschitz selection of the Chebyshev-centre map. Sbornik. Mathematics, Tome 204 (2013) no. 5, pp. 641-660. http://geodesic.mathdoc.fr/item/SM_2013_204_5_a1/