Existence of a Lipschitz selection of the Chebyshev-centre map
Sbornik. Mathematics, Tome 204 (2013) no. 5, pp. 641-660
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper is concerned with the existence of a Lipschitz selection for the operator $T_C$ (the Chebyshev-centre map) that assigns to any bounded subset $M$ of a Banach space $X$ the set $T_C(M)$ of its Chebyshev centres. It is proved that if the unit sphere $S(X)$ of $X$ has an exposed smooth point, then $T_C$ does not have a Lipschitz selection. It is also proved that if $X$ is finite dimensional the operator $T_C$ has a Lipschitz selection if and only if $X$ is polyhedral. The operator $T_C$ is also shown to have a Lipschitz selection in the space $\mathbf c_0(K)$ and $\mathbf c$-spaces. Bibliography: 4 titles.
Keywords:
Chebyshev centre, Lipschitz selection, metric projection.
@article{SM_2013_204_5_a1,
author = {Yu. Yu. Druzhinin},
title = {Existence of {a~Lipschitz} selection of the {Chebyshev-centre} map},
journal = {Sbornik. Mathematics},
pages = {641--660},
year = {2013},
volume = {204},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_5_a1/}
}
Yu. Yu. Druzhinin. Existence of a Lipschitz selection of the Chebyshev-centre map. Sbornik. Mathematics, Tome 204 (2013) no. 5, pp. 641-660. http://geodesic.mathdoc.fr/item/SM_2013_204_5_a1/
[1] A. L. Garkavi, “O chebyshevskom tsentre mnozhestva v normirovannom prostranstve”, Issled. po sovrem. probl. konstruktivn. teorii funktsii, Fizmatgiz, M., 1961, 328–331 | MR | Zbl
[2] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, 1-e izd., Fizmatlit, M., 2004; 2-е изд., испр и доп.; Физматлит, М., 2007 | Zbl
[3] V. N. Zamyatin, M. I. Kadets, “Chebyshevskie tsentry v prostranstve $C[a,b]$”, Teor. funktsii, funktsion. analiz i prilozh., 7 (1968), 20–26 | MR | Zbl
[4] K. Leichtweiss, Konvexe Mengen, VEB, Berlin, 1980 | MR | MR | Zbl | Zbl