Topology of actions and homogeneous spaces
Sbornik. Mathematics, Tome 204 (2013) no. 4, pp. 588-620

Voir la notice de l'article provenant de la source Math-Net.Ru

Topologization of a group of homeomorphisms and its action provide additional possibilities for studying the topological space, the group of homeomorphisms, and their interconnections. The subject of the paper is the use of the property of $d$-openness of an action (introduced by Ancel under the name of weak micro-transitivity) in the study of spaces with various forms of homogeneity. It is proved that a $d$-open action of a Čech-complete group is open. A characterization of Polish SLH spaces using $d$-openness is given, and it is established that any separable metrizable SLH space has an SLH completion that is a Polish space. Furthermore, the completion is realized in coordination with the completion of the acting group with respect to the two-sided uniformity. A sufficient condition is given for extension of a $d$-open action to the completion of the space with respect to the maximal equiuniformity with preservation of $d$-openness. A result of van Mill is generalized, namely, it is proved that any homogeneous CDH metrizable compactum is the only $G$-compactification of the space of rational numbers for the action of some Polish group. Bibliography: 39 titles.
Keywords: $G$-space, $G$-extension, coset space, strong local homogeneity, countable dense homogeneity.
@article{SM_2013_204_4_a5,
     author = {K. L. Kozlov},
     title = {Topology of actions and homogeneous spaces},
     journal = {Sbornik. Mathematics},
     pages = {588--620},
     publisher = {mathdoc},
     volume = {204},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_4_a5/}
}
TY  - JOUR
AU  - K. L. Kozlov
TI  - Topology of actions and homogeneous spaces
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 588
EP  - 620
VL  - 204
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_4_a5/
LA  - en
ID  - SM_2013_204_4_a5
ER  - 
%0 Journal Article
%A K. L. Kozlov
%T Topology of actions and homogeneous spaces
%J Sbornik. Mathematics
%D 2013
%P 588-620
%V 204
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_4_a5/
%G en
%F SM_2013_204_4_a5
K. L. Kozlov. Topology of actions and homogeneous spaces. Sbornik. Mathematics, Tome 204 (2013) no. 4, pp. 588-620. http://geodesic.mathdoc.fr/item/SM_2013_204_4_a5/