@article{SM_2013_204_4_a5,
author = {K. L. Kozlov},
title = {Topology of actions and homogeneous spaces},
journal = {Sbornik. Mathematics},
pages = {588--620},
year = {2013},
volume = {204},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_4_a5/}
}
K. L. Kozlov. Topology of actions and homogeneous spaces. Sbornik. Mathematics, Tome 204 (2013) no. 4, pp. 588-620. http://geodesic.mathdoc.fr/item/SM_2013_204_4_a5/
[1] E. G. Effros, “Transformation groups and $C^*$-algebras”, Ann. of Math. (2), 81:2 (1965), 38–55 | MR | Zbl
[2] G. S. Ungar, “On all kinds of homogeneous spaces”, Trans. Amer. Math. Soc., 212 (1975), 393–400 | DOI | MR | Zbl
[3] F. D. Ancel, “An alternative proof and applications of a theorem of E. G. Effros”, Michigan Math. J., 34:1 (1987), 39–55 | DOI | MR | Zbl
[4] A. A. George Michael, “On transitive topological group actions”, Topology Appl., 157:13 (2010), 2048–2051 | DOI | MR | Zbl
[5] V. A. Chatyrko, K. L. Kozlov, “The maximal $G$-compactifications of $G$-spaces with special actions”, Proceedings of the Ninth Prague Topological Symposium (Prague, Czech Republic, 2001), Topol. Atlas, North Bay, ON, 2002, 15–21 | MR | Zbl
[6] K. L. Kozlov, V. A. Chatyrko, “On $G$-compactifications”, Math. Notes, 78:5 (2005), 649–661 | DOI | DOI | MR | Zbl
[7] K. L. Kozlov, V. A. Chatyrko, “Topological transformation groups and Dugundji compacta”, Sb. Math., 201:1 (2010), 103–128 | DOI | DOI | MR | Zbl
[8] V. V. Uspenskiǐ, “Topological groups and Dugundji compacta”, Math. USSR-Sb., 67:2 (1990), 555–580 | DOI | MR | Zbl | Zbl
[9] V. A. Chatyrko, “On compact spaces with noncoinciding dimensions”, Trans. Moscow Math. Soc., 1991, 199–236 | MR | Zbl
[10] S. Watson, “The construction of topological spaces: planks and resolutions”, Recent progress in general topology (Prague, 1991), North-Holland, Amsterdam, 1992, 675–757 | MR | Zbl
[11] L. R. Ford, “Homeomorphism groups and coset spaces”, Trans. Amer. Math. Soc., 77 (1954), 490–497 | DOI | MR | Zbl
[12] J. van Mill, “Strong local homogeneity and coset spaces”, Proc. Amer. Math. Soc., 133:8 (2005), 2243–2249 | DOI | MR | Zbl
[13] J. van Mill, “Homogeneous spaces and transitive actions by Polish groups”, Israel J. Math., 165:1 (2008), 133–159 | DOI | MR | Zbl
[14] J. van Mill, “On the $G$-compactifications of the rational numbers”, Monatsh. Math., 157:3 (2009), 257–266 | DOI | MR | Zbl
[15] R. Engelking, Obschaya topologiya, Mir, M., 1986 ; R. Engelking, General topology, PWN, Warsaw, 1977 | MR | MR | Zbl
[16] J. R. Isbell, Uniform space, Providence, RI, Amer. Math. Soc., 1964 | MR | Zbl
[17] W. Roelcke, S. Dierolf, Uniform structures on topological groups and their quotients, McGraw-Hill, New-York, 1981 | MR | Zbl
[18] A. A. Markov, “O svobodnykh topologicheskikh gruppakh”, Izv. AN SSSR. Ser. matem., 9:1 (1945), 3–64 | MR | Zbl
[19] S. A. Antonyan, Yu. M. Smirnov, “Universal objects and compact exyensions for topological transformation groups”, Soviet Math. Dokl., 23:2 (1981), 279–284 | MR | Zbl
[20] J. de Vries, Topological transformation groups. 1. A categorical approach, Mathematisch Centrum, Amsterdam, 1975 | MR | Zbl
[21] T. Byczkowski, R. Pol, “On the closed graph and open mapping theorems”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 24:9 (1976), 723–726 | MR | Zbl
[22] F. Hausdorff, “Über inner Abbildungen”, Fund. Math., 23 (1934), 279–291 | Zbl
[23] L. G. Brown, “Topologically complete groups”, Proc. Amer. Math. Soc., 35:2 (1972), 593–600 | DOI | MR | Zbl
[24] N. Bourbaki, Éléments de mathématique. VIII. Première partie: Les structures fondamentales de l'analyse. Livre III: Topologie générale. Chapitre IX: Utilisation des nombres réels en topologie générale, Hermann, Paris, 1958 | MR | MR | Zbl | Zbl
[25] I. I. Guran, “On topological groups close to being Lindelöf”, Soviet Math. Dokl., 23:1 (1981), 173–175 | MR | Zbl
[26] A. V. Arhangel'skii, M. G. Tkachenko, Topological groups and related structures, Atlantis Stud. Math., 1, Atlantis Press, Paris, 2008 | MR | Zbl
[27] R. Arens, “Topologies for homeomorphism groups”, Amer. J. Math., 68:4 (1946), 593–610 | DOI | MR | Zbl
[28] V. V. Fedorchuk, “An example of a homogeneous bicompactum with noncoincident dimensions”, Soviet Math. Dokl., 12 (1971), 989–993 | MR | Zbl
[29] D. P. Bellamy, K. F. Porter, “A homogeneous continuum that is non-Effros”, Proc. Amer. Math. Soc., 113:2 (1991), 593–598 | DOI | MR | Zbl
[30] A. V. Ostrovskii, “Nepreryvnye obrazy proizvedeniya $C\times\mathbb Q$ kantorova sovershennogo mnozhestva $C$ i ratsionalnykh chisel”, Seminar po obschei topologii, Iz-vo Mosk. un-ta, M., 1981, 78–85 | MR | Zbl
[31] J. van Mill, “Characterization of some zero-dimensional separable metric spaces”, Trans. Amer. Math. Soc., 264:1 (1981), 205–215 | DOI | MR | Zbl
[32] P. S. Mostert, “Reasonable topologies for homeomorphism groups”, Proc. Amer. Math. Soc., 12 (1961), 598–602 | DOI | MR | Zbl
[33] J. van Mill, The infinite-dimensional topology of function spaces, North-Holland Math. Library, 64, North-Holland, Amsterdam, 2001 | MR | Zbl
[34] M. Megrelishvili, “Equivariant completions”, Comment. Math. Univ. Carolin., 35:3 (1994), 539–547 | MR | Zbl
[35] K. L. Kozlov, “Rectangular conditions in products and equivariant completions”, Topology Appl., 159:7 (2012), 1863–1874 | DOI | MR | Zbl
[36] E. K. van Douwen, “Characterizations of $\beta\mathbb Q$ and $\beta\mathbb R$”, Arch. Math. (Basel), 32:4 (1979), 391–393 | DOI | MR | Zbl
[37] J. van Mill, Ungar's theorems on countable dense homogeneity revisited, preprint
[38] R. D. Anderson, D. W. Curtis, J. van Mill, “A fake topological Hilbert space”, Trans. Amer. Math. Soc., 272:1 (1982), 311–321 | DOI | MR | Zbl
[39] M. G. Megrelishvili, “A Tikhonov $G$-space not admitting a compact Hausdorff $G$-extension or $G$-linearization”, Russian Math. Surveys, 43:2 (1988), 177–178 | DOI | MR | Zbl