Topology of actions and homogeneous spaces
Sbornik. Mathematics, Tome 204 (2013) no. 4, pp. 588-620 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Topologization of a group of homeomorphisms and its action provide additional possibilities for studying the topological space, the group of homeomorphisms, and their interconnections. The subject of the paper is the use of the property of $d$-openness of an action (introduced by Ancel under the name of weak micro-transitivity) in the study of spaces with various forms of homogeneity. It is proved that a $d$-open action of a Čech-complete group is open. A characterization of Polish SLH spaces using $d$-openness is given, and it is established that any separable metrizable SLH space has an SLH completion that is a Polish space. Furthermore, the completion is realized in coordination with the completion of the acting group with respect to the two-sided uniformity. A sufficient condition is given for extension of a $d$-open action to the completion of the space with respect to the maximal equiuniformity with preservation of $d$-openness. A result of van Mill is generalized, namely, it is proved that any homogeneous CDH metrizable compactum is the only $G$-compactification of the space of rational numbers for the action of some Polish group. Bibliography: 39 titles.
Keywords: $G$-space, $G$-extension, coset space, strong local homogeneity, countable dense homogeneity.
@article{SM_2013_204_4_a5,
     author = {K. L. Kozlov},
     title = {Topology of actions and homogeneous spaces},
     journal = {Sbornik. Mathematics},
     pages = {588--620},
     year = {2013},
     volume = {204},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_4_a5/}
}
TY  - JOUR
AU  - K. L. Kozlov
TI  - Topology of actions and homogeneous spaces
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 588
EP  - 620
VL  - 204
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_4_a5/
LA  - en
ID  - SM_2013_204_4_a5
ER  - 
%0 Journal Article
%A K. L. Kozlov
%T Topology of actions and homogeneous spaces
%J Sbornik. Mathematics
%D 2013
%P 588-620
%V 204
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2013_204_4_a5/
%G en
%F SM_2013_204_4_a5
K. L. Kozlov. Topology of actions and homogeneous spaces. Sbornik. Mathematics, Tome 204 (2013) no. 4, pp. 588-620. http://geodesic.mathdoc.fr/item/SM_2013_204_4_a5/

[1] E. G. Effros, “Transformation groups and $C^*$-algebras”, Ann. of Math. (2), 81:2 (1965), 38–55 | MR | Zbl

[2] G. S. Ungar, “On all kinds of homogeneous spaces”, Trans. Amer. Math. Soc., 212 (1975), 393–400 | DOI | MR | Zbl

[3] F. D. Ancel, “An alternative proof and applications of a theorem of E. G. Effros”, Michigan Math. J., 34:1 (1987), 39–55 | DOI | MR | Zbl

[4] A. A. George Michael, “On transitive topological group actions”, Topology Appl., 157:13 (2010), 2048–2051 | DOI | MR | Zbl

[5] V. A. Chatyrko, K. L. Kozlov, “The maximal $G$-compactifications of $G$-spaces with special actions”, Proceedings of the Ninth Prague Topological Symposium (Prague, Czech Republic, 2001), Topol. Atlas, North Bay, ON, 2002, 15–21 | MR | Zbl

[6] K. L. Kozlov, V. A. Chatyrko, “On $G$-compactifications”, Math. Notes, 78:5 (2005), 649–661 | DOI | DOI | MR | Zbl

[7] K. L. Kozlov, V. A. Chatyrko, “Topological transformation groups and Dugundji compacta”, Sb. Math., 201:1 (2010), 103–128 | DOI | DOI | MR | Zbl

[8] V. V. Uspenskiǐ, “Topological groups and Dugundji compacta”, Math. USSR-Sb., 67:2 (1990), 555–580 | DOI | MR | Zbl | Zbl

[9] V. A. Chatyrko, “On compact spaces with noncoinciding dimensions”, Trans. Moscow Math. Soc., 1991, 199–236 | MR | Zbl

[10] S. Watson, “The construction of topological spaces: planks and resolutions”, Recent progress in general topology (Prague, 1991), North-Holland, Amsterdam, 1992, 675–757 | MR | Zbl

[11] L. R. Ford, “Homeomorphism groups and coset spaces”, Trans. Amer. Math. Soc., 77 (1954), 490–497 | DOI | MR | Zbl

[12] J. van Mill, “Strong local homogeneity and coset spaces”, Proc. Amer. Math. Soc., 133:8 (2005), 2243–2249 | DOI | MR | Zbl

[13] J. van Mill, “Homogeneous spaces and transitive actions by Polish groups”, Israel J. Math., 165:1 (2008), 133–159 | DOI | MR | Zbl

[14] J. van Mill, “On the $G$-compactifications of the rational numbers”, Monatsh. Math., 157:3 (2009), 257–266 | DOI | MR | Zbl

[15] R. Engelking, Obschaya topologiya, Mir, M., 1986 ; R. Engelking, General topology, PWN, Warsaw, 1977 | MR | MR | Zbl

[16] J. R. Isbell, Uniform space, Providence, RI, Amer. Math. Soc., 1964 | MR | Zbl

[17] W. Roelcke, S. Dierolf, Uniform structures on topological groups and their quotients, McGraw-Hill, New-York, 1981 | MR | Zbl

[18] A. A. Markov, “O svobodnykh topologicheskikh gruppakh”, Izv. AN SSSR. Ser. matem., 9:1 (1945), 3–64 | MR | Zbl

[19] S. A. Antonyan, Yu. M. Smirnov, “Universal objects and compact exyensions for topological transformation groups”, Soviet Math. Dokl., 23:2 (1981), 279–284 | MR | Zbl

[20] J. de Vries, Topological transformation groups. 1. A categorical approach, Mathematisch Centrum, Amsterdam, 1975 | MR | Zbl

[21] T. Byczkowski, R. Pol, “On the closed graph and open mapping theorems”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 24:9 (1976), 723–726 | MR | Zbl

[22] F. Hausdorff, “Über inner Abbildungen”, Fund. Math., 23 (1934), 279–291 | Zbl

[23] L. G. Brown, “Topologically complete groups”, Proc. Amer. Math. Soc., 35:2 (1972), 593–600 | DOI | MR | Zbl

[24] N. Bourbaki, Éléments de mathématique. VIII. Première partie: Les structures fondamentales de l'analyse. Livre III: Topologie générale. Chapitre IX: Utilisation des nombres réels en topologie générale, Hermann, Paris, 1958 | MR | MR | Zbl | Zbl

[25] I. I. Guran, “On topological groups close to being Lindelöf”, Soviet Math. Dokl., 23:1 (1981), 173–175 | MR | Zbl

[26] A. V. Arhangel'skii, M. G. Tkachenko, Topological groups and related structures, Atlantis Stud. Math., 1, Atlantis Press, Paris, 2008 | MR | Zbl

[27] R. Arens, “Topologies for homeomorphism groups”, Amer. J. Math., 68:4 (1946), 593–610 | DOI | MR | Zbl

[28] V. V. Fedorchuk, “An example of a homogeneous bicompactum with noncoincident dimensions”, Soviet Math. Dokl., 12 (1971), 989–993 | MR | Zbl

[29] D. P. Bellamy, K. F. Porter, “A homogeneous continuum that is non-Effros”, Proc. Amer. Math. Soc., 113:2 (1991), 593–598 | DOI | MR | Zbl

[30] A. V. Ostrovskii, “Nepreryvnye obrazy proizvedeniya $C\times\mathbb Q$ kantorova sovershennogo mnozhestva $C$ i ratsionalnykh chisel”, Seminar po obschei topologii, Iz-vo Mosk. un-ta, M., 1981, 78–85 | MR | Zbl

[31] J. van Mill, “Characterization of some zero-dimensional separable metric spaces”, Trans. Amer. Math. Soc., 264:1 (1981), 205–215 | DOI | MR | Zbl

[32] P. S. Mostert, “Reasonable topologies for homeomorphism groups”, Proc. Amer. Math. Soc., 12 (1961), 598–602 | DOI | MR | Zbl

[33] J. van Mill, The infinite-dimensional topology of function spaces, North-Holland Math. Library, 64, North-Holland, Amsterdam, 2001 | MR | Zbl

[34] M. Megrelishvili, “Equivariant completions”, Comment. Math. Univ. Carolin., 35:3 (1994), 539–547 | MR | Zbl

[35] K. L. Kozlov, “Rectangular conditions in products and equivariant completions”, Topology Appl., 159:7 (2012), 1863–1874 | DOI | MR | Zbl

[36] E. K. van Douwen, “Characterizations of $\beta\mathbb Q$ and $\beta\mathbb R$”, Arch. Math. (Basel), 32:4 (1979), 391–393 | DOI | MR | Zbl

[37] J. van Mill, Ungar's theorems on countable dense homogeneity revisited, preprint

[38] R. D. Anderson, D. W. Curtis, J. van Mill, “A fake topological Hilbert space”, Trans. Amer. Math. Soc., 272:1 (1982), 311–321 | DOI | MR | Zbl

[39] M. G. Megrelishvili, “A Tikhonov $G$-space not admitting a compact Hausdorff $G$-extension or $G$-linearization”, Russian Math. Surveys, 43:2 (1988), 177–178 | DOI | MR | Zbl