Lower bounds for sums of eigenvalues of elliptic operators and systems
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 204 (2013) no. 4, pp. 563-587
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Two-term lower bounds of Berzin-Li-Yau type are obtained for the sums of eigenvalues of elliptic operators and systems with constant coefficients and Dirichlet boundary conditions. The polyharmonic operator, the Stokes system and its generalizations, the two-dimensional buckling problem, and also the Klein-Gordon operator are considered.
Bibliography: 32 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Berezin-Li-Yau inequalities, Stokes operator, polyharmonic operator, buckling problem.
                    
                    
                    
                  
                
                
                @article{SM_2013_204_4_a4,
     author = {A. A. Ilyin},
     title = {Lower bounds for sums of eigenvalues of elliptic operators and systems},
     journal = {Sbornik. Mathematics},
     pages = {563--587},
     publisher = {mathdoc},
     volume = {204},
     number = {4},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_4_a4/}
}
                      
                      
                    A. A. Ilyin. Lower bounds for sums of eigenvalues of elliptic operators and systems. Sbornik. Mathematics, Tome 204 (2013) no. 4, pp. 563-587. http://geodesic.mathdoc.fr/item/SM_2013_204_4_a4/
