@article{SM_2013_204_4_a4,
author = {A. A. Ilyin},
title = {Lower bounds for sums of eigenvalues of elliptic operators and systems},
journal = {Sbornik. Mathematics},
pages = {563--587},
year = {2013},
volume = {204},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_4_a4/}
}
A. A. Ilyin. Lower bounds for sums of eigenvalues of elliptic operators and systems. Sbornik. Mathematics, Tome 204 (2013) no. 4, pp. 563-587. http://geodesic.mathdoc.fr/item/SM_2013_204_4_a4/
[1] P. Li, S. T. Yau, “On the Schrödinger equation and the eigenvalue problem”, Comm. Math. Phys., 88:3 (1983), 309–318 | MR | Zbl
[2] F. A. Berezin, “Covariant and contravariant symbols of operators”, Math. USSR-Izv., 6:5 (1972), 1117–1151 | DOI | MR | Zbl | Zbl
[3] A. Laptev, T. Weidl, “Recent results on Lieb–Thirring inequalities”, Journées “Équations aux Dérivées Partielles”, Exp. XX (La Chapelle sur Erdre, 2000), Univ. Nantes, Nantes, 2000 | MR | Zbl
[4] E. Lieb, W. Thirring, “Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities”, Studies in Math. Phys. Essays in honor of V. Bargmann, Princeton Univ. Press, Princeton, NJ, 1976, 269–303 | Zbl
[5] A. Laptev, T. Weidl, “Sharp Lieb–Thirring inequalities in high dimensions”, Acta Math., 184:1 (2000), 87–111 | DOI | MR | Zbl
[6] J. Dolbeault, A. Laptev, M. Loss, “Lieb–Thirring inequalities with improved constants”, J. Eur. Math. Soc. (JEMS), 10:4 (2008), 1121–1126 | DOI | MR | Zbl
[7] A. A. Ilyin, “On the spectrum of the Stokes operator”, Funct. Anal. Appl., 43:4 (2009), 254–263 | DOI | DOI | MR | Zbl
[8] A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland, Amsterdam, 1992 | MR | MR | Zbl | Zbl
[9] P. Constantin, C. Foias, Navier–Stokes equations, Chicago Lectures in Math., Univ. of Chicago Press, Chicago, IL, 1988 | MR | Zbl
[10] E. Lieb, “On characteristic exponents in turbulence”, Comm. Math. Phys., 92:4 (1984), 473–480 | DOI | MR | Zbl
[11] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, Springer-Verlag, New York, 1997 | MR | Zbl
[12] G. Métivier, “Valeurs propres d'oérateurs definis par la restriction de systèmes variationnels à des sous-espaces”, J. Math. Pures Appl. (9), 57:2 (1978), 133–156 | MR | Zbl
[13] K. I. Babenko, “On the asymptotics of the eigenvalues of the linearized Navier–Stokes equations”, Soviet Math. Dokl., 25:2 (1982), 359–364 | MR | Zbl
[14] A. D. Melas, “A lower bound for sums of eigenvalues of the Laplacian”, Proc. Amer. Math. Soc., 131:2 (2002), 631–636 | DOI | MR | Zbl
[15] A. A. Ilyin, “Lower bounds for the spectrum of the Laplace and Stokes operators”, Discrete Contin. Dyn. Syst., 28:1 (2010), 131–146 | DOI | MR | Zbl
[16] M. S. Ashbaugh, “Isoperimetric and universal inequalities for eigenvalues”, Spectral theory and geometry (Edinburgh, UK, 1998), London Math. Soc. Lecture Note Ser., 273, Cambridge Univ. Press, Cambridge, 1999, 95–139 | MR | Zbl
[17] H. Kovařík, S. Vugalter, T. Weidl, “Two-dimensional Berezin–Li–Yau inequalities with a correction term”, Comm. Math. Phys., 287:3 (2009), 959–981 | MR | Zbl
[18] L. Geisinger, A. Laptev, T. Weidl, “Geometrical versions of improved Berezin–Li–Yau inequalities”, J. Spectr. Theory, 1:1 (2011), 87–109 | DOI | MR | Zbl
[19] S. Z. Levendorski\v i, “Asymptotics of the spectrum of problems with constraints”, Math. USSR-Sb., 57:1 (1987), 77–95 | DOI | MR | Zbl
[20] M. Sh. Birman, M. Z. Solomyak, “$L_2$-Theory of the Maxwell operator in arbitrary domains”, Russian Math. Surveys, 42:6 (1987), 75–96 | DOI | MR | Zbl
[21] A. N. Kozhevnikov, “On the operator of the linearized steady-state Navier–Stokes problem”, Math. USSR-Sb., 53:1 (1986), 1–16 | DOI | MR | Zbl
[22] G. Talenti, “Inequalities in rearrangement invariant function spaces”, Nonlinear analysis, function spaces and applications (Prague, 1994), v. 5, Prometheus, Prague, 1994, 177–230 | MR | Zbl
[23] E. H. Lieb, M. Loss, Analysis, Grad. Stud. Math., v. 14, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl
[24] D. E. Edmunds, A. A. Ilyin, “On some multiplicative inequalities and approximation numbers”, Quart. J. Math. Oxford Ser. (2), 45:178 (1994), 159–179 | DOI | MR | Zbl
[25] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, North-Holland, Amsterdam–New York, 1979 | MR | MR | Zbl | Zbl
[26] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York–London, 1963 | MR | MR | Zbl | Zbl
[27] G. Pólya, G. Szegö, Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud., 27, Princeton Univ. Press, Princeton, NJ, 1951 | MR | MR | Zbl | Zbl
[28] E. M. Harrell, S. Y. Yolcu, “Eigenvalue inequalities for Klein–Gordon operators”, J. Funct. Anal., 256:12 (2009), 3977–3995 | DOI | MR | Zbl
[29] S. Y. Yolcu, “An improvement to a Berezin–Li–Yau type inequality”, Proc. Amer. Math. Soc., 138:11 (2010), 4059–4066 | DOI | MR | Zbl
[30] M. S. Birman, M. Z. Solomyak, Spectral-theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), Kluwer Acad. Publ., Dordrecht, 1987 | MR | MR | Zbl
[31] G. Duvaut, J.-L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972 | MR | MR | Zbl | Zbl
[32] W. Rudin, Functional analysis, McGraw-Hill, New York–Düsseldorf–Johannesburg, 1973 | MR | MR | Zbl