On Euler's problem
Sbornik. Mathematics, Tome 204 (2013) no. 4, pp. 539-562 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the classical problem on the tallest column which was posed by Euler in 1757. Bernoulli-Euler theory serves today as the basis for the design of high buildings. This problem is reduced to the problem of finding the potential for the Sturm-Liouville equation corresponding to the maximum of the first eigenvalue. The problem has been studied by many mathematicians but we give the first rigorous proof of the existence and uniqueness of the optimal column and we give new formulae which let us find it. Our method is based on a new approach consisting in the study of critical points of a related nonlinear functional. Bibliography: 6 titles.
Keywords: optimization of the first eigenvalue.
Mots-clés : Sturm-Liouville problem
@article{SM_2013_204_4_a3,
     author = {Yu. V. Egorov},
     title = {On {Euler's} problem},
     journal = {Sbornik. Mathematics},
     pages = {539--562},
     year = {2013},
     volume = {204},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_4_a3/}
}
TY  - JOUR
AU  - Yu. V. Egorov
TI  - On Euler's problem
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 539
EP  - 562
VL  - 204
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_4_a3/
LA  - en
ID  - SM_2013_204_4_a3
ER  - 
%0 Journal Article
%A Yu. V. Egorov
%T On Euler's problem
%J Sbornik. Mathematics
%D 2013
%P 539-562
%V 204
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2013_204_4_a3/
%G en
%F SM_2013_204_4_a3
Yu. V. Egorov. On Euler's problem. Sbornik. Mathematics, Tome 204 (2013) no. 4, pp. 539-562. http://geodesic.mathdoc.fr/item/SM_2013_204_4_a3/

[1] L. Euler, Sur la force des colonnes, Académie Royale des Sciences et Belles Lettres, Berlin, 1757

[2] J. B. Keller, F. I. Niordson, “The tallest column”, J. Math. Mech., 16 (1966), 433–446 | Zbl

[3] S. J. Cox, C. M. McCarthy, “The shape of the tallest column”, SIAM J. Math. Anal., 29:3 (1998), 547–554 | DOI | MR | Zbl

[4] Yu. V. Egorov, “On the tallest column”, C. R. Math. Acad. Sci. Paris, 338:5 (2010), 266–270 | DOI | Zbl

[5] Yu. V. Egorov, “On the Lagrange problem about the strongest column”, C. R. Math. Acad. Sci. Paris, 335:12 (2002), 997–1002 | DOI | MR | Zbl

[6] J. I. Diaz, M. Sauvageot, “Euler's column revisited”, Nonlinear Anal. Real World Appl., 11:4 (2010), 2731–2747 | DOI | MR | Zbl