Reducing quasilinear systems to block triangular form
Sbornik. Mathematics, Tome 204 (2013) no. 3, pp. 438-462

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with systems of $n$ quasilinear partial differential equations of the first order with 2 independent variables. Using a geometric formalism for such equations, which goes back to Riemann, it is possible to assign a field of linear operators on an appropriate vector bundle to this type of quasilinear system. Several tests for a quasilinear system to be reducible to triangular or block triangular form are obtained in terms of this field; they supplement well known results on diagonalization and block diagonalization due to Haantjes and Bogoyavlenskij. Bibliography: 10 titles.
Keywords: block triangular quasilinear systems, block diagonal quasilinear systems, fields of linear operators, Nijenhuis tensors, Haantjes tensors.
@article{SM_2013_204_3_a5,
     author = {D. V. Tunitsky},
     title = {Reducing quasilinear systems to block triangular form},
     journal = {Sbornik. Mathematics},
     pages = {438--462},
     publisher = {mathdoc},
     volume = {204},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_3_a5/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - Reducing quasilinear systems to block triangular form
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 438
EP  - 462
VL  - 204
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_3_a5/
LA  - en
ID  - SM_2013_204_3_a5
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T Reducing quasilinear systems to block triangular form
%J Sbornik. Mathematics
%D 2013
%P 438-462
%V 204
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_3_a5/
%G en
%F SM_2013_204_3_a5
D. V. Tunitsky. Reducing quasilinear systems to block triangular form. Sbornik. Mathematics, Tome 204 (2013) no. 3, pp. 438-462. http://geodesic.mathdoc.fr/item/SM_2013_204_3_a5/