Reducing quasilinear systems to block triangular form
Sbornik. Mathematics, Tome 204 (2013) no. 3, pp. 438-462 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with systems of $n$ quasilinear partial differential equations of the first order with 2 independent variables. Using a geometric formalism for such equations, which goes back to Riemann, it is possible to assign a field of linear operators on an appropriate vector bundle to this type of quasilinear system. Several tests for a quasilinear system to be reducible to triangular or block triangular form are obtained in terms of this field; they supplement well known results on diagonalization and block diagonalization due to Haantjes and Bogoyavlenskij. Bibliography: 10 titles.
Keywords: block triangular quasilinear systems, block diagonal quasilinear systems, fields of linear operators, Nijenhuis tensors, Haantjes tensors.
@article{SM_2013_204_3_a5,
     author = {D. V. Tunitsky},
     title = {Reducing quasilinear systems to block triangular form},
     journal = {Sbornik. Mathematics},
     pages = {438--462},
     year = {2013},
     volume = {204},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_3_a5/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - Reducing quasilinear systems to block triangular form
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 438
EP  - 462
VL  - 204
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_3_a5/
LA  - en
ID  - SM_2013_204_3_a5
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T Reducing quasilinear systems to block triangular form
%J Sbornik. Mathematics
%D 2013
%P 438-462
%V 204
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2013_204_3_a5/
%G en
%F SM_2013_204_3_a5
D. V. Tunitsky. Reducing quasilinear systems to block triangular form. Sbornik. Mathematics, Tome 204 (2013) no. 3, pp. 438-462. http://geodesic.mathdoc.fr/item/SM_2013_204_3_a5/

[1] O. I. Bogoyavlenskij, “Block-diagonalizability problem for hydrodynamic type systems”, J. Math. Phys., 47:6 (2006), 063502 | DOI | MR | Zbl

[2] R. Courant, D. Hilbert, Methods of mathematical physics, v. 2, Partial differential equations, Wiley, New York, 1989 | MR | Zbl | Zbl

[3] J. Haantjes, “On $X_m$-forming sets of eigenvectors”, Nederl. Akad. Wetensch. Proc. Ser. A., 58 (1955), 158–162 | MR | Zbl

[4] M. Postnikov, Lecons de géométrie. Géométrie différentielle, Traduit Russe Math., Mir, Moscow, 1990 | MR | MR | Zbl | Zbl

[5] M. Postnikov, Lectures in geometry. Semester II: Linear algebra and differential geometry, Mir, Moscow, 1982 | MR | Zbl

[6] A. Nijenhuis, “$X_{n-1}$-forming sets of eigenvectors”, Nederl. Akad. Wetensch. Proc. Ser. A., 54 (1951), 200–212 | MR | Zbl

[7] Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, v. 1, Interscience Publ., New York–London–Sydney, 1963 | MR | MR | Zbl | Zbl

[8] O. I. Bogoyavlenskij, “Algebraic identities for the Nijenhuis tensors”, Differential Geom. Appl., 24:5 (2006), 447–457 | DOI | MR | Zbl

[9] B. L. Rozhdestvenskij, N. N. Yanenko, Systems of quasilinear equations and their applications to gas dynamics, Transl. Math. Monogr., 55, Amer. Math. Soc., Providence, RI, 1983 | MR | MR | Zbl | Zbl

[10] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Foresman, Glenview, IL–London, 1971 | MR | MR | Zbl | Zbl