@article{SM_2013_204_3_a5,
author = {D. V. Tunitsky},
title = {Reducing quasilinear systems to block triangular form},
journal = {Sbornik. Mathematics},
pages = {438--462},
year = {2013},
volume = {204},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_3_a5/}
}
D. V. Tunitsky. Reducing quasilinear systems to block triangular form. Sbornik. Mathematics, Tome 204 (2013) no. 3, pp. 438-462. http://geodesic.mathdoc.fr/item/SM_2013_204_3_a5/
[1] O. I. Bogoyavlenskij, “Block-diagonalizability problem for hydrodynamic type systems”, J. Math. Phys., 47:6 (2006), 063502 | DOI | MR | Zbl
[2] R. Courant, D. Hilbert, Methods of mathematical physics, v. 2, Partial differential equations, Wiley, New York, 1989 | MR | Zbl | Zbl
[3] J. Haantjes, “On $X_m$-forming sets of eigenvectors”, Nederl. Akad. Wetensch. Proc. Ser. A., 58 (1955), 158–162 | MR | Zbl
[4] M. Postnikov, Lecons de géométrie. Géométrie différentielle, Traduit Russe Math., Mir, Moscow, 1990 | MR | MR | Zbl | Zbl
[5] M. Postnikov, Lectures in geometry. Semester II: Linear algebra and differential geometry, Mir, Moscow, 1982 | MR | Zbl
[6] A. Nijenhuis, “$X_{n-1}$-forming sets of eigenvectors”, Nederl. Akad. Wetensch. Proc. Ser. A., 54 (1951), 200–212 | MR | Zbl
[7] Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, v. 1, Interscience Publ., New York–London–Sydney, 1963 | MR | MR | Zbl | Zbl
[8] O. I. Bogoyavlenskij, “Algebraic identities for the Nijenhuis tensors”, Differential Geom. Appl., 24:5 (2006), 447–457 | DOI | MR | Zbl
[9] B. L. Rozhdestvenskij, N. N. Yanenko, Systems of quasilinear equations and their applications to gas dynamics, Transl. Math. Monogr., 55, Amer. Math. Soc., Providence, RI, 1983 | MR | MR | Zbl | Zbl
[10] F. W. Warner, Foundations of differentiable manifolds and Lie groups, Foresman, Glenview, IL–London, 1971 | MR | MR | Zbl | Zbl