Mots-clés : moduli space, algebraic surface
@article{SM_2013_204_3_a4,
author = {N. V. Timofeeva},
title = {On a~new compactification of moduli of vector bundles on a~surface. {V:} {Existence} of a~universal family},
journal = {Sbornik. Mathematics},
pages = {411--437},
year = {2013},
volume = {204},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_3_a4/}
}
N. V. Timofeeva. On a new compactification of moduli of vector bundles on a surface. V: Existence of a universal family. Sbornik. Mathematics, Tome 204 (2013) no. 3, pp. 411-437. http://geodesic.mathdoc.fr/item/SM_2013_204_3_a4/
[1] D. Gieseker, “On the moduli of vector bundles on an algebraic surface”, Ann. of Math. (2), 106:1 (1977), 45–60 | DOI | MR | Zbl
[2] G. Ellingsrud, L. Göttsche, “Variation of moduli space and Donaldson invariants under change of polarization”, J. Reine Angew. Math., 467 (1995), 1–49 | MR | Zbl
[3] M. Maruyama, “Moduli of stable sheaves. II”, J. Math. Kyoto Univ., 18:3 (1978), 557–614 | MR | Zbl
[4] N. V. Timofeeva, “A compactification of the moduli variety of stable vector 2-bundles on a surface in the Hilbert scheme”, Math. Notes, 82:5 (2007), 677–690 | DOI | DOI | MR | Zbl
[5] N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface”, Sb. Math., 199:7 (2008), 1051–1070 | DOI | DOI | MR
[6] N. V. Timofeeva, “On the new compactification of moduli of vector bundles on a surface. II”, Sb. Math., 200:3 (2009), 405–427 | DOI | DOI | MR | Zbl
[7] N. V. Timofeeva, “On degeneration of the surface in the Fitting compactification of moduli of stable vector bundles”, Math. Notes, 90:1 (2011), 142–148 | DOI | DOI | MR | Zbl
[8] D. Gieseker, J. Li, “Moduli of high rank vector bundles over surfaces”, J. Amer. Math. Soc., 9:1 (1996), 107–151 | DOI | MR | Zbl
[9] K. G. O'Grady, “Moduli of vector bundles on projective surfaces: some basic results”, Invent. Math., 123:1 (1996), 141–207 | DOI | MR
[10] N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. III: Functorial approach”, Sb. Math., 202:3 (2011), 413–465 | DOI | DOI | MR | Zbl
[11] N. V. Timofeeva, “O novoi kompaktifikatsii modulei vektornykh rassloenii na poverkhnosti. IV: Neprivedennaya skhema modulei”, Matem. sb., 204:1 (2013), 139–160 | DOI
[12] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Aspects Math., E31, Vieweg, Braunschweig, 1997 | MR | Zbl
[13] D. Luna, “Slices étales”, Bull. Soc. Math. France, 33 (1973), 81–105 | MR | Zbl
[14] D. Mumford, J. Fogarty, Geometric invariant theory, Ergeb. Math. Grenzgeb., 34, Springer-Verlag, Berlin, 1982 | MR | Zbl
[15] J. S. Milne, Étale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, Princeton, NJ, 1980 | MR | MR | Zbl | Zbl
[16] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 ; R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg–Berlin, 1977 | MR | Zbl | MR | Zbl