On a new compactification of moduli of vector bundles on a surface. V: Existence of a universal family
Sbornik. Mathematics, Tome 204 (2013) no. 3, pp. 411-437 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the existence of a universal family/pseudofamily of admissible stable pairs over the space of moduli $\widetilde M$ constructed in previous papers of the author. Bibliography: 16 titles.
Keywords: semistable coherent sheaves, universal family, pseudofamily.
Mots-clés : moduli space, algebraic surface
@article{SM_2013_204_3_a4,
     author = {N. V. Timofeeva},
     title = {On a~new compactification of moduli of vector bundles on a~surface. {V:} {Existence} of a~universal family},
     journal = {Sbornik. Mathematics},
     pages = {411--437},
     year = {2013},
     volume = {204},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_3_a4/}
}
TY  - JOUR
AU  - N. V. Timofeeva
TI  - On a new compactification of moduli of vector bundles on a surface. V: Existence of a universal family
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 411
EP  - 437
VL  - 204
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_3_a4/
LA  - en
ID  - SM_2013_204_3_a4
ER  - 
%0 Journal Article
%A N. V. Timofeeva
%T On a new compactification of moduli of vector bundles on a surface. V: Existence of a universal family
%J Sbornik. Mathematics
%D 2013
%P 411-437
%V 204
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2013_204_3_a4/
%G en
%F SM_2013_204_3_a4
N. V. Timofeeva. On a new compactification of moduli of vector bundles on a surface. V: Existence of a universal family. Sbornik. Mathematics, Tome 204 (2013) no. 3, pp. 411-437. http://geodesic.mathdoc.fr/item/SM_2013_204_3_a4/

[1] D. Gieseker, “On the moduli of vector bundles on an algebraic surface”, Ann. of Math. (2), 106:1 (1977), 45–60 | DOI | MR | Zbl

[2] G. Ellingsrud, L. Göttsche, “Variation of moduli space and Donaldson invariants under change of polarization”, J. Reine Angew. Math., 467 (1995), 1–49 | MR | Zbl

[3] M. Maruyama, “Moduli of stable sheaves. II”, J. Math. Kyoto Univ., 18:3 (1978), 557–614 | MR | Zbl

[4] N. V. Timofeeva, “A compactification of the moduli variety of stable vector 2-bundles on a surface in the Hilbert scheme”, Math. Notes, 82:5 (2007), 677–690 | DOI | DOI | MR | Zbl

[5] N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface”, Sb. Math., 199:7 (2008), 1051–1070 | DOI | DOI | MR

[6] N. V. Timofeeva, “On the new compactification of moduli of vector bundles on a surface. II”, Sb. Math., 200:3 (2009), 405–427 | DOI | DOI | MR | Zbl

[7] N. V. Timofeeva, “On degeneration of the surface in the Fitting compactification of moduli of stable vector bundles”, Math. Notes, 90:1 (2011), 142–148 | DOI | DOI | MR | Zbl

[8] D. Gieseker, J. Li, “Moduli of high rank vector bundles over surfaces”, J. Amer. Math. Soc., 9:1 (1996), 107–151 | DOI | MR | Zbl

[9] K. G. O'Grady, “Moduli of vector bundles on projective surfaces: some basic results”, Invent. Math., 123:1 (1996), 141–207 | DOI | MR

[10] N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. III: Functorial approach”, Sb. Math., 202:3 (2011), 413–465 | DOI | DOI | MR | Zbl

[11] N. V. Timofeeva, “O novoi kompaktifikatsii modulei vektornykh rassloenii na poverkhnosti. IV: Neprivedennaya skhema modulei”, Matem. sb., 204:1 (2013), 139–160 | DOI

[12] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Aspects Math., E31, Vieweg, Braunschweig, 1997 | MR | Zbl

[13] D. Luna, “Slices étales”, Bull. Soc. Math. France, 33 (1973), 81–105 | MR | Zbl

[14] D. Mumford, J. Fogarty, Geometric invariant theory, Ergeb. Math. Grenzgeb., 34, Springer-Verlag, Berlin, 1982 | MR | Zbl

[15] J. S. Milne, Étale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, Princeton, NJ, 1980 | MR | MR | Zbl | Zbl

[16] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 ; R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg–Berlin, 1977 | MR | Zbl | MR | Zbl