On a class of summability methods for multiple Fourier series
Sbornik. Mathematics, Tome 204 (2013) no. 3, pp. 307-322
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper shows that the same properties which hold for the classical $(C,1)$-means are preserved for a sufficiently large class of summability methods for multiple Fourier series involving rectangular partial sums. More precisely, Fourier series of continuous functions are uniformly summable by these methods, and Fourier series of functions from the class $L (\ln^+ L)^{m-1}(T^m)$ are summable almost everywhere. Bibliography: 6 titles.
Keywords:
multiple Fourier series, summability methods, generalized Cesàro means.
@article{SM_2013_204_3_a0,
author = {M. I. Dyachenko},
title = {On a class of summability methods for multiple {Fourier} series},
journal = {Sbornik. Mathematics},
pages = {307--322},
year = {2013},
volume = {204},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_3_a0/}
}
M. I. Dyachenko. On a class of summability methods for multiple Fourier series. Sbornik. Mathematics, Tome 204 (2013) no. 3, pp. 307-322. http://geodesic.mathdoc.fr/item/SM_2013_204_3_a0/
[1] L. V. Zhizhiashvili, Nekotorye voprosy mnogomernogo garmonicheskogo analiza, Izd-vo Tbilis. un-ta, Tbilisi, 1983 | MR | Zbl
[2] B. I. Golubov, “Multiple Fourier series and integrals”, J. Soviet Math., 24:6 (1984), 639–673 | DOI | MR | Zbl | Zbl
[3] M. I. D'yachenko, “Generalized Cesaro summation of multiple Fourier series”, Moscow Univ. Math. Bull., 56:5 (2001), 15–20 | MR | Zbl
[4] B. Jessen, J. Marcinkiewicz, A. Zygmund, “Note on the differentiability of multiple integrals”, Fund. Math., 25 (1935), 217–234 | Zbl
[5] A. Zygmund, Trigonometric series, v. I, Cambridge Univ. Press, New York, 1959 | MR | MR | Zbl | Zbl
[6] S. Saks, “On the strong derivatives of functions of intervals”, Fund. Mathemat., 25 (1935), 235–252 | Zbl