On a class of summability methods for multiple Fourier series
Sbornik. Mathematics, Tome 204 (2013) no. 3, pp. 307-322

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper shows that the same properties which hold for the classical $(C,1)$-means are preserved for a sufficiently large class of summability methods for multiple Fourier series involving rectangular partial sums. More precisely, Fourier series of continuous functions are uniformly summable by these methods, and Fourier series of functions from the class $L (\ln^+ L)^{m-1}(T^m)$ are summable almost everywhere. Bibliography: 6 titles.
Keywords: multiple Fourier series, summability methods, generalized Cesàro means.
@article{SM_2013_204_3_a0,
     author = {M. I. Dyachenko},
     title = {On a class of summability methods for multiple {Fourier} series},
     journal = {Sbornik. Mathematics},
     pages = {307--322},
     publisher = {mathdoc},
     volume = {204},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_3_a0/}
}
TY  - JOUR
AU  - M. I. Dyachenko
TI  - On a class of summability methods for multiple Fourier series
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 307
EP  - 322
VL  - 204
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_3_a0/
LA  - en
ID  - SM_2013_204_3_a0
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%T On a class of summability methods for multiple Fourier series
%J Sbornik. Mathematics
%D 2013
%P 307-322
%V 204
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_3_a0/
%G en
%F SM_2013_204_3_a0
M. I. Dyachenko. On a class of summability methods for multiple Fourier series. Sbornik. Mathematics, Tome 204 (2013) no. 3, pp. 307-322. http://geodesic.mathdoc.fr/item/SM_2013_204_3_a0/