Approximations of the operator exponential in a~periodic diffusion problem with drift
Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 280-306
Voir la notice de l'article provenant de la source Math-Net.Ru
A Cauchy problem for a parabolic diffusion equation with 1-periodic coefficients containing first order terms is studied. For the corresponding semigroup we construct approximations in the $L^2$-operator norm on sections $t=\mathrm{const}$ of order $O(t^{-m/2})$ as $t\to\infty$ for $ m=1$ or $m=2$. The spectral method based on the Bloch representation of an operator with periodic coefficients is used.
Bibliography: 25 titles.
Keywords:
diffusion with drift, operator exponential, homogenization, spectral method, Bloch decomposition of functions.
@article{SM_2013_204_2_a6,
author = {S. E. Pastukhova},
title = {Approximations of the operator exponential in a~periodic diffusion problem with drift},
journal = {Sbornik. Mathematics},
pages = {280--306},
publisher = {mathdoc},
volume = {204},
number = {2},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_2_a6/}
}
S. E. Pastukhova. Approximations of the operator exponential in a~periodic diffusion problem with drift. Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 280-306. http://geodesic.mathdoc.fr/item/SM_2013_204_2_a6/