Approximations of the operator exponential in a periodic diffusion problem with drift
Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 280-306 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Cauchy problem for a parabolic diffusion equation with 1-periodic coefficients containing first order terms is studied. For the corresponding semigroup we construct approximations in the $L^2$-operator norm on sections $t=\mathrm{const}$ of order $O(t^{-m/2})$ as $t\to\infty$ for $ m=1$ or $m=2$. The spectral method based on the Bloch representation of an operator with periodic coefficients is used. Bibliography: 25 titles.
Keywords: diffusion with drift, operator exponential, homogenization, spectral method, Bloch decomposition of functions.
@article{SM_2013_204_2_a6,
     author = {S. E. Pastukhova},
     title = {Approximations of the operator exponential in a~periodic diffusion problem with drift},
     journal = {Sbornik. Mathematics},
     pages = {280--306},
     year = {2013},
     volume = {204},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_2_a6/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - Approximations of the operator exponential in a periodic diffusion problem with drift
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 280
EP  - 306
VL  - 204
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_2_a6/
LA  - en
ID  - SM_2013_204_2_a6
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T Approximations of the operator exponential in a periodic diffusion problem with drift
%J Sbornik. Mathematics
%D 2013
%P 280-306
%V 204
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2013_204_2_a6/
%G en
%F SM_2013_204_2_a6
S. E. Pastukhova. Approximations of the operator exponential in a periodic diffusion problem with drift. Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 280-306. http://geodesic.mathdoc.fr/item/SM_2013_204_2_a6/

[1] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Springer-Verlag,, Berlin–Göttingen–Heidelberg; Academic Press, New York, 1965 | MR | MR | Zbl | Zbl

[2] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | MR | Zbl | Zbl

[3] S. Mizohata, The theory of partial differential equations, Cambridge Univ. Press, London, 1973 | MR | Zbl

[4] V. V. Zhikov, “Spectral approach to asymptotic problems in diffusion”, Differential Equations, 25:1 (1989), 33–39 | MR | Zbl

[5] I. A. Aleksandrova, “The spectral method in asymptotic diffusion problems with drift”, Math. Notes, 59:5 (1996), 554–556 | DOI | DOI | MR | Zbl

[6] V. V. Zhikov, “Asymptotic behavior and stabilization of solutions of a second order parabolic equation with lower order terms”, Trans. Mosc. Math. Soc., 2 (1984), 69–99 | MR | Zbl | Zbl

[7] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl

[8] D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, Pure Appl. Math., 88, Academic Press, New York–London, 1980 | MR | MR | Zbl | Zbl

[9] A. Bensoussan, J.-L. Lions, G. C. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland, Amsterdam, 1978 | MR | Zbl

[10] E. V. Sevost'yanova, “An asymptotic expansion of the solution of a second order elliptic equation with periodic rapidly oscillating coefficients”, Math. USSR-Sb., 43:2 (1982), 181–198 | DOI | MR | Zbl | Zbl

[11] C. Conca, M. Vanninathan, “Homogenization of periodic structures via Bloch decomposition”, SIAM J. Appl. Math., 57:6 (1997), 1639–1659 | DOI | MR | Zbl

[12] C. Conca, R. Orive, M. Vanninathan, “Bloch approximation in homogenization and applications”, SIAM J. Math. Anal., 33:5 (2002), 1166–1198 | DOI | MR | Zbl

[13] M. Sh. Birman, T. A. Suslina, “Homogenization with corrector term for periodic elliptic differential operators”, St. Petersburg Math. J., 17:6 (2006), 897–973 | DOI | MR | Zbl

[14] E. S. Vasilevskaya, T. A. Suslina, “Usrednenie parabolicheskikh i ellipticheskikh periodicheskikh operatorov v $L_2(\mathbb R^d)$ pri uchete pervogo i vtorogo korrektorov”, Algebra i analiz, 24:2 (2012), 1–103

[15] V. V. Zhikov, “Spectral method in homogenization theory”, Proc. Steklov Inst. Math., 250 (2005), 85–94 | MR | Zbl

[16] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994 | MR | MR | Zbl | Zbl

[17] S. E. Pastukhova, “Approximations of the exponential of an operator with periodic coefficients”, J. Math. Sci. (N. Y.), 181:5 (2012), 668–700 | DOI | MR | Zbl

[18] V. V. Zhikov, “Some estimates from homogenization theory”, Dokl. Math., 73:1 (2006), 96–99 | DOI | MR | Zbl

[19] V. V. Zhikov, S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[20] V. V. Zhikov, S. E. Pastukhova, “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:2 (2006), 224–237 | DOI | MR | Zbl

[21] S. E. Pastukhova, “Estimates in homogenization of parabolic equations with locally periodic coefficients”, Asymptot. Anal., 66:3–4 (2010), 207–228 | DOI | MR | Zbl

[22] S. E. Pastukhova, R. N. Tikhomirov, “Estimates of locally periodic and reiterated homogenization for parabolic equations”, Dokl. Math., 80:2 (2009), 674–678 | DOI | MR | Zbl

[23] I. M. Gelfand, “Ralozhenie kharakteristicheskikh funktsii uravneniya s periodicheskimi koeffitsientami”, Dokl. AN SSSR, 73 (1950), 1117–1120 | Zbl

[24] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl

[25] F. Riesz, B. Sz.-Nagy, Vorlesungen uber Funktionalanalysis, VEB Deutscher Verlag der Wissenschaften, Berlin, 1973 | MR | MR | Zbl