Approximations of the operator exponential in a~periodic diffusion problem with drift
Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 280-306

Voir la notice de l'article provenant de la source Math-Net.Ru

A Cauchy problem for a parabolic diffusion equation with 1-periodic coefficients containing first order terms is studied. For the corresponding semigroup we construct approximations in the $L^2$-operator norm on sections $t=\mathrm{const}$ of order $O(t^{-m/2})$ as $t\to\infty$ for $ m=1$ or $m=2$. The spectral method based on the Bloch representation of an operator with periodic coefficients is used. Bibliography: 25 titles.
Keywords: diffusion with drift, operator exponential, homogenization, spectral method, Bloch decomposition of functions.
@article{SM_2013_204_2_a6,
     author = {S. E. Pastukhova},
     title = {Approximations of the operator exponential in a~periodic diffusion problem with drift},
     journal = {Sbornik. Mathematics},
     pages = {280--306},
     publisher = {mathdoc},
     volume = {204},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_2_a6/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - Approximations of the operator exponential in a~periodic diffusion problem with drift
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 280
EP  - 306
VL  - 204
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_2_a6/
LA  - en
ID  - SM_2013_204_2_a6
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T Approximations of the operator exponential in a~periodic diffusion problem with drift
%J Sbornik. Mathematics
%D 2013
%P 280-306
%V 204
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_2_a6/
%G en
%F SM_2013_204_2_a6
S. E. Pastukhova. Approximations of the operator exponential in a~periodic diffusion problem with drift. Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 280-306. http://geodesic.mathdoc.fr/item/SM_2013_204_2_a6/