Boundary uniqueness theorems for functions whose integrals over hyperbolic discs vanish
Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 264-279
Voir la notice de l'article provenant de la source Math-Net.Ru
Sharp conditions are found describing the admissible rate of decrease of a nontrivial function whose integrals over all hyperbolic discs with fixed radius vanish. For the first time, the boundary behaviour of the function is investigated in a neighbourhood of a single point on the boundary of the domain of definition.
Bibliography: 17 titles.
Keywords:
boundary uniqueness theorem, hyperbolic space
Mots-clés : Möbius transformations.
Mots-clés : Möbius transformations.
@article{SM_2013_204_2_a5,
author = {O. A. Ochakovskaya},
title = {Boundary uniqueness theorems for functions whose integrals over hyperbolic discs vanish},
journal = {Sbornik. Mathematics},
pages = {264--279},
publisher = {mathdoc},
volume = {204},
number = {2},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_2_a5/}
}
O. A. Ochakovskaya. Boundary uniqueness theorems for functions whose integrals over hyperbolic discs vanish. Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 264-279. http://geodesic.mathdoc.fr/item/SM_2013_204_2_a5/