Boundary uniqueness theorems for functions whose integrals over hyperbolic discs vanish
Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 264-279

Voir la notice de l'article provenant de la source Math-Net.Ru

Sharp conditions are found describing the admissible rate of decrease of a nontrivial function whose integrals over all hyperbolic discs with fixed radius vanish. For the first time, the boundary behaviour of the function is investigated in a neighbourhood of a single point on the boundary of the domain of definition. Bibliography: 17 titles.
Keywords: boundary uniqueness theorem, hyperbolic space
Mots-clés : Möbius transformations.
@article{SM_2013_204_2_a5,
     author = {O. A. Ochakovskaya},
     title = {Boundary uniqueness theorems for functions whose integrals over hyperbolic discs vanish},
     journal = {Sbornik. Mathematics},
     pages = {264--279},
     publisher = {mathdoc},
     volume = {204},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_2_a5/}
}
TY  - JOUR
AU  - O. A. Ochakovskaya
TI  - Boundary uniqueness theorems for functions whose integrals over hyperbolic discs vanish
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 264
EP  - 279
VL  - 204
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_2_a5/
LA  - en
ID  - SM_2013_204_2_a5
ER  - 
%0 Journal Article
%A O. A. Ochakovskaya
%T Boundary uniqueness theorems for functions whose integrals over hyperbolic discs vanish
%J Sbornik. Mathematics
%D 2013
%P 264-279
%V 204
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_2_a5/
%G en
%F SM_2013_204_2_a5
O. A. Ochakovskaya. Boundary uniqueness theorems for functions whose integrals over hyperbolic discs vanish. Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 264-279. http://geodesic.mathdoc.fr/item/SM_2013_204_2_a5/