Boundary uniqueness theorems for functions whose integrals over hyperbolic discs vanish
Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 264-279 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sharp conditions are found describing the admissible rate of decrease of a nontrivial function whose integrals over all hyperbolic discs with fixed radius vanish. For the first time, the boundary behaviour of the function is investigated in a neighbourhood of a single point on the boundary of the domain of definition. Bibliography: 17 titles.
Keywords: boundary uniqueness theorem, hyperbolic space
Mots-clés : Möbius transformations.
@article{SM_2013_204_2_a5,
     author = {O. A. Ochakovskaya},
     title = {Boundary uniqueness theorems for functions whose integrals over hyperbolic discs vanish},
     journal = {Sbornik. Mathematics},
     pages = {264--279},
     year = {2013},
     volume = {204},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_2_a5/}
}
TY  - JOUR
AU  - O. A. Ochakovskaya
TI  - Boundary uniqueness theorems for functions whose integrals over hyperbolic discs vanish
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 264
EP  - 279
VL  - 204
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_2_a5/
LA  - en
ID  - SM_2013_204_2_a5
ER  - 
%0 Journal Article
%A O. A. Ochakovskaya
%T Boundary uniqueness theorems for functions whose integrals over hyperbolic discs vanish
%J Sbornik. Mathematics
%D 2013
%P 264-279
%V 204
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2013_204_2_a5/
%G en
%F SM_2013_204_2_a5
O. A. Ochakovskaya. Boundary uniqueness theorems for functions whose integrals over hyperbolic discs vanish. Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 264-279. http://geodesic.mathdoc.fr/item/SM_2013_204_2_a5/

[1] L. V. Ahlfors, Moebius transformations in several dimensions, Ordway Professorship Lectures Math., Univ. of Minnesota, Minneapolis, MI, 1981 | MR | MR | Zbl | Zbl

[2] V. V. Volchkov, Integral geometry and convolution equations, Kluwer Acad. Publ., Dordrecht, 2003 | MR | Zbl

[3] V. V. Volchkov, Vit. V. Volchkov, Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer Monogr. Math., Springer-Verlag, London, 2009 | MR | Zbl

[4] F. John, Plane waves and spherical means applied to partial differential equations, Interscience Publ., New York–London, 1955 | MR | Zbl

[5] G. V. Badalyan, Quasipower series and quasianalytic classes of functions, Transl. Math. Monogr., 216, Amer. Math. Soc., Providence, RI, 2002 | MR | MR | Zbl | Zbl

[6] L. Hörmander, The analysis of linear partial differential operators, v. 1, Grundlehren Math. Wiss., 256–257, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl

[7] I. D. Smith, “Harmonic analysis of scalar and vector fields in $\mathbb{R}^n$”, Proc. Cambridge Philos. Soc., 72:3 (1972), 403–416 | DOI | MR | Zbl

[8] S. Thangavelu, “Spherical means and $CR$ functions on the Heisenberg group”, J. Anal. Math., 63:1 (1994), 255–286 | DOI | MR | Zbl

[9] M. Shahshahani, A. Sitaram, “The Pompeiu problem in exterior domains in symmetric spaces”, Integral geometry (Brunswick, Maine, 1984), Contemp. Math., 63, Amer. Math. Soc., Providence, RI, 1987, 267–277 | DOI | MR | Zbl

[10] A. Sitaram, “Fourier analysis and determining sets for Radon measures on $\mathbb{R}^n$”, Illinois J. Math., 28:2 (1984), 339–347 | MR | Zbl

[11] O. A. Ochakovskaya, “Precise characterizations of admissible rate of decrease of a non-trivial function with zero ball means”, Sb. Math., 199:1 (2008), 45–65 | DOI | DOI | MR | Zbl

[12] O. A. Ochakovskaya, “On functions with zero integrals over balls of fixed radius on a half-space”, Dokl. Math., 64:3 (2001), 413–415 | MR | Zbl

[13] S. Helgason, Groups and geometric analysis, Pure Appl. Math., 113, Academic Press, Orlando, FL, 1984 | MR | MR | Zbl

[14] V. V. Volchkov, “A definitive version of the local two-radii theorem on hyperbolic spaces”, Izv. Math., 65:2 (2001), 207–229 | DOI | DOI | MR | Zbl

[15] V. V. Volchkov, Vit. V. Volchkov, “Convolution equations and the local Pompeiu property on symmetric spaces and on phase space associated to the Heisenberg group”, J. Anal. Math., 105:1 (2008), 43–123 | DOI | MR | Zbl

[16] B. G. Korenev, Vvedenie v teoriyu besselevykh funktsii, Nauka, M., 1971 | MR | Zbl

[17] Eu. Seneta, Regularly varying functions, Lecture Notes in Math., 508, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | DOI | MR | MR | Zbl | Zbl