Factorizations in finite groups
Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 237-263

Voir la notice de l'article provenant de la source Math-Net.Ru

A necessary condition for uniqueness of factorizations of elements of a finite group $G$ with factors belonging to a union of some conjugacy classes of $G$ is given. This condition is sufficient if the number of factors belonging to each conjugacy class is big enough. The result is applied to the problem on the number of irreducible components of the Hurwitz space of degree $d$ marked coverings of $\mathbb P^1$ with given Galois group $G$ and fixed collection of local monodromies. Bibliography: 9 titles.
Keywords: factorization semigroups, irreducible components of the Hurwitz space of coverings of the projective line.
@article{SM_2013_204_2_a4,
     author = {Vik. S. Kulikov},
     title = {Factorizations in finite groups},
     journal = {Sbornik. Mathematics},
     pages = {237--263},
     publisher = {mathdoc},
     volume = {204},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_2_a4/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Factorizations in finite groups
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 237
EP  - 263
VL  - 204
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_2_a4/
LA  - en
ID  - SM_2013_204_2_a4
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Factorizations in finite groups
%J Sbornik. Mathematics
%D 2013
%P 237-263
%V 204
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_2_a4/
%G en
%F SM_2013_204_2_a4
Vik. S. Kulikov. Factorizations in finite groups. Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 237-263. http://geodesic.mathdoc.fr/item/SM_2013_204_2_a4/