An estimate for the rank of the intersection of subgroups in free amalgamated products of two groups with normal finite amalgamated subgroup
Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 223-236 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We generalize the estimate for the rank of intersection of subgroups in free products of groups, proved earlier by Ivanov and Dicks (which is analogous to the Hanna Neumann inequality in free groups) to the case of free amalgamated products of groups with normal finite amalgamated subgroup. We also prove that the estimate obtained is sharp and cannot be further improved when the amalgamated product contains an involution. Bibliography: 11 titles.
Keywords: amalgamated free products, Hanna Neumann inequality.
@article{SM_2013_204_2_a3,
     author = {A. O. Zakharov},
     title = {An estimate for the rank of the intersection of subgroups in free amalgamated products of two groups with normal finite amalgamated subgroup},
     journal = {Sbornik. Mathematics},
     pages = {223--236},
     year = {2013},
     volume = {204},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_2_a3/}
}
TY  - JOUR
AU  - A. O. Zakharov
TI  - An estimate for the rank of the intersection of subgroups in free amalgamated products of two groups with normal finite amalgamated subgroup
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 223
EP  - 236
VL  - 204
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_2_a3/
LA  - en
ID  - SM_2013_204_2_a3
ER  - 
%0 Journal Article
%A A. O. Zakharov
%T An estimate for the rank of the intersection of subgroups in free amalgamated products of two groups with normal finite amalgamated subgroup
%J Sbornik. Mathematics
%D 2013
%P 223-236
%V 204
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2013_204_2_a3/
%G en
%F SM_2013_204_2_a3
A. O. Zakharov. An estimate for the rank of the intersection of subgroups in free amalgamated products of two groups with normal finite amalgamated subgroup. Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 223-236. http://geodesic.mathdoc.fr/item/SM_2013_204_2_a3/

[1] A. G. Howson, “On the intersection of finitely generated free groups”, J. London Math. Soc., 29 (1954), 428–434 | DOI | MR | Zbl

[2] H. Neumann, “On the intersection of finitely generated free groups”, Publ. Math. Debrecen, 4 (1956), 186–189 | MR | Zbl

[3] S. V. Ivanov, “On the Kurosh rank of the intersection of subgroups in free products of groups”, Adv. Math., 218:2 (2008), 465–484 | DOI | MR | Zbl

[4] W. Dicks, S. V. Ivanov, “On the intersection of free subgroups in free products of groups”, Math. Proc. Cambridge Philos. Soc., 144:3 (2008), 511–534 | DOI | MR | Zbl

[5] S. V. Ivanov, “On the intersection of finitely generated subgroups in free products of groups”, Internat. J. Algebra Comput., 9:5 (1999), 521–528 | DOI | MR | Zbl

[6] A. Kurosh, “Die Untergruppen der freien Produkte von beliebigen Gruppen”, Math. Ann., 109:1 (1934), 647–660 | DOI | MR | Zbl

[7] A. Karrass, D. Solitar, “The subgroups of a free product of two groups with an amalgamated subgroup”, Trans. Amer. Math. Soc., 150 (1970), 227–255 | DOI | MR | Zbl

[8] O. Schreier, “Die Untergruppen der freien Gruppen”, Hamburg. Abh., 5:1 (1927), 161–183 | DOI | Zbl

[9] S. V. Ivanov, “Intersecting free subgroups in free products of groups”, Internat. J. Algebra Comput., 11:3 (2001), 281–290 | DOI | MR | Zbl

[10] S. V. Ivanov, “A property of groups and the Cauchy–Davenport theorem”, J. Group Theory, 13:1 (2010), 21–39 | DOI | MR | Zbl

[11] G. A. Jones, D. Singerman, “Theory of maps on orientable surfaces”, Proc. London Math. Soc. (3), 37:2 (1978), 273–307 | DOI | MR | Zbl