Convergence of multipoint Padé approximants of piecewise analytic functions
Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 190-222 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The behaviour as $n\to\infty$ of multipoint Padé approximants to a function which is (piecewise) holomorphic on a union of finitely many continua is investigated. The convergence of multipoint Padé approximants is proved for a function which extends holomorphically from these continua to a union of domains whose boundaries have a certain symmetry property. An analogue of Stahl's theorem is established for two-point Padé approximants to a pair of functions, either of which is a multivalued analytic function with finitely many branch points. Bibliography: 11 titles.
Keywords: rational approximation, convergence in capacity, asymptotic behaviour of poles.
Mots-clés : orthogonal polynomials, Padé approximants
@article{SM_2013_204_2_a2,
     author = {V. I. Buslaev},
     title = {Convergence of multipoint {Pad\'e} approximants of piecewise analytic functions},
     journal = {Sbornik. Mathematics},
     pages = {190--222},
     year = {2013},
     volume = {204},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_2_a2/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Convergence of multipoint Padé approximants of piecewise analytic functions
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 190
EP  - 222
VL  - 204
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_2_a2/
LA  - en
ID  - SM_2013_204_2_a2
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Convergence of multipoint Padé approximants of piecewise analytic functions
%J Sbornik. Mathematics
%D 2013
%P 190-222
%V 204
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2013_204_2_a2/
%G en
%F SM_2013_204_2_a2
V. I. Buslaev. Convergence of multipoint Padé approximants of piecewise analytic functions. Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 190-222. http://geodesic.mathdoc.fr/item/SM_2013_204_2_a2/

[1] H. Stahl, “Orthogonal polynomials with complex-valued weight function. I”, Constr. Approx., 2:1 (1986), 225–240 | DOI | MR | Zbl

[2] H. Stahl, “Extremal domains associated with an analytic function. I”, Complex Variables Theory Appl., 4:4 (1985), 311–324 | DOI | MR | Zbl

[3] E. B. Saff, V. Totik, Logarithmic potentials with external fields, Appendix B by Th. Bloom, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997 | MR | Zbl

[4] V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, “Metod vnutrennikh variatsii i suschestvovanie $S$-kompaktov”, Analiticheskie i geometricheskie voprosy kompleksnogo analiza, Tr. MIAN, 279, MAIK, M., 2012, 31–58

[5] E. A. Perevoznikova, E. A. Rakhmanov, Variatsiya ravnovesnoi energii i $S$-svoistvo kompaktov minimalnoi emkosti, Preprint, M., 1994

[6] V. I. Buslaev, “On the convergence of continued T-fractions”, Proc. Steklov Inst. Math., 235 (2001), 29–43 | MR | Zbl

[7] H. Stahl, “Convergence of rational interpolants”, Numerical analysis (Louvain-la-Neuve, 1995), Bull. Belg. Math. Soc. Simon Stevin, 1996, 11–32 | MR | Zbl

[8] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl | Zbl

[9] A. I. Aptekarev, V. I. Buslaev, A. Martinez-Finkelshtein, S. P. Suetin, “Padé approximants, continued fractions, and orthogonal polynomials”, Russian Math. Surveys, 66:6 (2011), 1049–1131 | DOI | DOI | MR | Zbl

[10] A. I. Aptekarev, A. Kuijlaars, “Hermite–Padé approximations and multiple orthogonal polynomial ensembles”, Russian Math. Surveys, 66:6 (2011), 1133–1199 | DOI | DOI | MR | Zbl

[11] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials”, Sb. Math., 202:2 (2011), 155–206 | DOI | DOI | MR | Zbl