Convergence of multipoint Pad\'e approximants of piecewise analytic functions
Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 190-222

Voir la notice de l'article provenant de la source Math-Net.Ru

The behaviour as $n\to\infty$ of multipoint Padé approximants to a function which is (piecewise) holomorphic on a union of finitely many continua is investigated. The convergence of multipoint Padé approximants is proved for a function which extends holomorphically from these continua to a union of domains whose boundaries have a certain symmetry property. An analogue of Stahl's theorem is established for two-point Padé approximants to a pair of functions, either of which is a multivalued analytic function with finitely many branch points. Bibliography: 11 titles.
Keywords: rational approximation, convergence in capacity, asymptotic behaviour of poles.
Mots-clés : orthogonal polynomials, Padé approximants
@article{SM_2013_204_2_a2,
     author = {V. I. Buslaev},
     title = {Convergence of multipoint {Pad\'e} approximants of piecewise analytic functions},
     journal = {Sbornik. Mathematics},
     pages = {190--222},
     publisher = {mathdoc},
     volume = {204},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_2_a2/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Convergence of multipoint Pad\'e approximants of piecewise analytic functions
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 190
EP  - 222
VL  - 204
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_2_a2/
LA  - en
ID  - SM_2013_204_2_a2
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Convergence of multipoint Pad\'e approximants of piecewise analytic functions
%J Sbornik. Mathematics
%D 2013
%P 190-222
%V 204
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_2_a2/
%G en
%F SM_2013_204_2_a2
V. I. Buslaev. Convergence of multipoint Pad\'e approximants of piecewise analytic functions. Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 190-222. http://geodesic.mathdoc.fr/item/SM_2013_204_2_a2/