Splitting automorphisms of free Burnside groups
Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 182-189

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, if the order of a splitting automorphism of odd period $n\geqslant1003$ of a free Burnside group $B(m,n)$ is a prime, then the automorphism is inner. This implies, for every prime $n\geqslant1009$, an affirmative answer to the question on the coincidence of the splitting automorphisms of period $n$ of the group $B(m,n)$ with the inner automorphisms (this question was posed in the “Kourovka Notebook” in 1990). Bibliography: 17 titles.
Keywords: splitting automorphism, free Burnside group, inner automorphism, Tarski-monster, subdirect product.
@article{SM_2013_204_2_a1,
     author = {V. S. Atabekyan},
     title = {Splitting automorphisms of free {Burnside} groups},
     journal = {Sbornik. Mathematics},
     pages = {182--189},
     publisher = {mathdoc},
     volume = {204},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_2_a1/}
}
TY  - JOUR
AU  - V. S. Atabekyan
TI  - Splitting automorphisms of free Burnside groups
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 182
EP  - 189
VL  - 204
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_2_a1/
LA  - en
ID  - SM_2013_204_2_a1
ER  - 
%0 Journal Article
%A V. S. Atabekyan
%T Splitting automorphisms of free Burnside groups
%J Sbornik. Mathematics
%D 2013
%P 182-189
%V 204
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_2_a1/
%G en
%F SM_2013_204_2_a1
V. S. Atabekyan. Splitting automorphisms of free Burnside groups. Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 182-189. http://geodesic.mathdoc.fr/item/SM_2013_204_2_a1/