Splitting automorphisms of free Burnside groups
Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 182-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that, if the order of a splitting automorphism of odd period $n\geqslant1003$ of a free Burnside group $B(m,n)$ is a prime, then the automorphism is inner. This implies, for every prime $n\geqslant1009$, an affirmative answer to the question on the coincidence of the splitting automorphisms of period $n$ of the group $B(m,n)$ with the inner automorphisms (this question was posed in the “Kourovka Notebook” in 1990). Bibliography: 17 titles.
Keywords: splitting automorphism, free Burnside group, inner automorphism, Tarski-monster, subdirect product.
@article{SM_2013_204_2_a1,
     author = {V. S. Atabekyan},
     title = {Splitting automorphisms of free {Burnside} groups},
     journal = {Sbornik. Mathematics},
     pages = {182--189},
     year = {2013},
     volume = {204},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_2_a1/}
}
TY  - JOUR
AU  - V. S. Atabekyan
TI  - Splitting automorphisms of free Burnside groups
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 182
EP  - 189
VL  - 204
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_2_a1/
LA  - en
ID  - SM_2013_204_2_a1
ER  - 
%0 Journal Article
%A V. S. Atabekyan
%T Splitting automorphisms of free Burnside groups
%J Sbornik. Mathematics
%D 2013
%P 182-189
%V 204
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2013_204_2_a1/
%G en
%F SM_2013_204_2_a1
V. S. Atabekyan. Splitting automorphisms of free Burnside groups. Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 182-189. http://geodesic.mathdoc.fr/item/SM_2013_204_2_a1/

[1] Yu. M. Gorchakov, “O beskonechnykh gruppakh Frobeniusa”, Algebra i logika, 4:1 (1965), 15–29 | MR | Zbl

[2] O. H. Kegel, “Die Nilpotenz der $H_p$-Gruppen”, Math. Z., 75:1 (1961), 373–376 | DOI | MR | Zbl

[3] J. Thompson, “Finite groups with fixed-point-free automorphisms of prime order”, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 578–581 | DOI | MR | Zbl

[4] E. I. Khukhro, “Nilpotency of solvable groups admitting a splitting automorphism of prime order”, Algebra and Logic, 19:1 (1980), 77–84 | DOI | MR | Zbl

[5] S. I. Adian, The Burnside problem and identities in groups, Ergeb. Math. Grenzgeb., 95, Springer-Verlag, Berlin–New York, 1979 | MR | MR | Zbl | Zbl

[6] P. S. Novikov, S. I. Adjan, “Infinite periodic groups. I”, Math. USSR-Izv., 2:1 (1968), 209–236 | DOI | MR | Zbl

[7] P. S. Novikov, S. I. Adjan, “Infinite periodic groups. II”, Math. USSR-Izv., 2:2 (1968), 241–479 | DOI | MR | Zbl

[8] P. S. Novikov, S. I. Adjan, “Infinite periodic groups. III”, Math. USSR-Izv., 2:3 (1968), 665–685 | DOI | MR | Zbl

[9] S. I. Adian, “The Burnside problem and related topics”, Russian Math. Surveys, 65:5 (2010), 805–855 | DOI | DOI | MR | Zbl

[10] V. D. Mazurov, Yu. I. Merzlyakov, V. A. Chirkin, Kourovskaya tetrad. Nereshennye voprosy teorii grupp, izd. 11, Izd-vo In-ta matem. SO AN SSSR, Novosibirsk, 1990 | MR | Zbl

[11] S. I. Adyan, I. G. Lysënok, “On groups all of whose proper subgroups are finite cyclic”, Math. USSR-Izv., 39:2 (1992), 905–957 | DOI | MR | Zbl

[12] A. Yu. Ol'shanskii, “Groups of bounded period with subgroups of prime order”, Algebra and Logic, 21:5 (1982), 369–418 | DOI | MR | Zbl

[13] V. S. Atabekyan, “On periodic groups of odd period $n\ge 1003$”, Math. Notes, 82:4 (2007), 443–447 | DOI | DOI | MR | Zbl

[14] V. S. Atabekyan, “Simple and free periodic groups”, Moscow Univ. Math. Bull., 42:6 (1987), 80–82 | MR | Zbl | Zbl

[15] V. S. Atabekyan, “On normal subgroups in the periodic products of S. I. Adian”, Proc. Steklov Inst. Math., 274 (2011), 9–24 | DOI | MR

[16] V. S. Atabekyan, “Normal automorphisms of free Burnside groups”, Izv. Math., 75:2 (2011), 223–237 | DOI | DOI | MR | Zbl

[17] D. J. S. Robinson, A course in the theory of groups, Grad. Texts in Math., 80, Springer-Verlag, New York, 1996 | DOI | MR | Zbl