Splitting automorphisms of free Burnside groups
Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 182-189
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that, if the order of a splitting automorphism of odd period $n\geqslant1003$ of a free Burnside group $B(m,n)$ is a prime, then the automorphism is inner. This implies, for every prime $n\geqslant1009$, an affirmative answer to the question on the coincidence of the splitting automorphisms of period $n$ of the group $B(m,n)$ with the inner automorphisms (this question was posed in the “Kourovka Notebook” in 1990).
Bibliography: 17 titles.
Keywords:
splitting automorphism, free Burnside group, inner automorphism, Tarski-monster, subdirect product.
@article{SM_2013_204_2_a1,
author = {V. S. Atabekyan},
title = {Splitting automorphisms of free {Burnside} groups},
journal = {Sbornik. Mathematics},
pages = {182--189},
publisher = {mathdoc},
volume = {204},
number = {2},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_2_a1/}
}
V. S. Atabekyan. Splitting automorphisms of free Burnside groups. Sbornik. Mathematics, Tome 204 (2013) no. 2, pp. 182-189. http://geodesic.mathdoc.fr/item/SM_2013_204_2_a1/