Mots-clés : moduli space, algebraic surface.
@article{SM_2013_204_1_a4,
author = {N. V. Timofeeva},
title = {On a~new compactification of moduli of vector bundles on a~surface. {IV:} {Nonreduced} moduli},
journal = {Sbornik. Mathematics},
pages = {133--153},
year = {2013},
volume = {204},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_1_a4/}
}
N. V. Timofeeva. On a new compactification of moduli of vector bundles on a surface. IV: Nonreduced moduli. Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 133-153. http://geodesic.mathdoc.fr/item/SM_2013_204_1_a4/
[1] N. V. Timofeeva, “A compactification of the moduli variety of stable vector 2-bundles on a surface in the Hilbert scheme”, Math. Notes, 82:5 (2007), 677–690 | DOI | DOI | MR | Zbl
[2] N. V. Timofeeva, “On degeneration of the surface in the Fitting compactification of moduli of stable vector bundles”, Math. Notes, 90:1 (2011), 142–148 | DOI | DOI | MR | Zbl
[3] N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. III: Functorial approach”, Sb. Math., 202:3 (2011), 413–465 | DOI | DOI | MR | Zbl
[4] N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface”, Sb. Math., 199:7 (2008), 1051–1070 | DOI | DOI | MR
[5] N. V. Timofeeva, “On the new compactification of moduli of vector bundles on a surface. II”, Sb. Math., 200:3 (2009), 405–427 | DOI | DOI | MR | Zbl
[6] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Aspects Math., E31, Vieweg, Braunschweig, 1997 | MR | Zbl
[7] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 ; R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg–Berlin, 1977 | MR | Zbl | MR | Zbl
[8] A. M. Bravo, S. Encinas, O. U. Villamayor, “A simplified proof of desingularization and applications”, Rev. Mat. Iberoamericana, 21:2 (2005), 349–458 | DOI | MR | Zbl
[9] A. Grothendieck, J. A. Dieudonné, Éléments de géométrie algébrique. I, Springer-Verlag, Berlin–Heidelberg–New York, 1971 | Zbl
[10] D. Mumford, J. Fogarty, Geometric invariant theory, Ergeb. Math. Grenzgeb., 34, Springer-Verlag, Berlin, 1982 | MR | Zbl