On a new compactification of moduli of vector bundles on a surface. IV: Nonreduced moduli
Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 133-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The construction of a nonreduced projective moduli scheme of semistable admissible pairs is performed. We establish the connection of this moduli scheme with the reduced moduli scheme constructed in the previous article and prove that the nonreduced moduli scheme contains an open subscheme which is isomorphic to a moduli scheme of semistable vector bundles. Bibliography: 10 titles.
Keywords: semistable coherent sheaves, moduli functor
Mots-clés : moduli space, algebraic surface.
@article{SM_2013_204_1_a4,
     author = {N. V. Timofeeva},
     title = {On a~new compactification of moduli of vector bundles on a~surface. {IV:} {Nonreduced} moduli},
     journal = {Sbornik. Mathematics},
     pages = {133--153},
     year = {2013},
     volume = {204},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_1_a4/}
}
TY  - JOUR
AU  - N. V. Timofeeva
TI  - On a new compactification of moduli of vector bundles on a surface. IV: Nonreduced moduli
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 133
EP  - 153
VL  - 204
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_1_a4/
LA  - en
ID  - SM_2013_204_1_a4
ER  - 
%0 Journal Article
%A N. V. Timofeeva
%T On a new compactification of moduli of vector bundles on a surface. IV: Nonreduced moduli
%J Sbornik. Mathematics
%D 2013
%P 133-153
%V 204
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2013_204_1_a4/
%G en
%F SM_2013_204_1_a4
N. V. Timofeeva. On a new compactification of moduli of vector bundles on a surface. IV: Nonreduced moduli. Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 133-153. http://geodesic.mathdoc.fr/item/SM_2013_204_1_a4/

[1] N. V. Timofeeva, “A compactification of the moduli variety of stable vector 2-bundles on a surface in the Hilbert scheme”, Math. Notes, 82:5 (2007), 677–690 | DOI | DOI | MR | Zbl

[2] N. V. Timofeeva, “On degeneration of the surface in the Fitting compactification of moduli of stable vector bundles”, Math. Notes, 90:1 (2011), 142–148 | DOI | DOI | MR | Zbl

[3] N. V. Timofeeva, “On a new compactification of moduli of vector bundles on a surface. III: Functorial approach”, Sb. Math., 202:3 (2011), 413–465 | DOI | DOI | MR | Zbl

[4] N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface”, Sb. Math., 199:7 (2008), 1051–1070 | DOI | DOI | MR

[5] N. V. Timofeeva, “On the new compactification of moduli of vector bundles on a surface. II”, Sb. Math., 200:3 (2009), 405–427 | DOI | DOI | MR | Zbl

[6] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Aspects Math., E31, Vieweg, Braunschweig, 1997 | MR | Zbl

[7] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 ; R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg–Berlin, 1977 | MR | Zbl | MR | Zbl

[8] A. M. Bravo, S. Encinas, O. U. Villamayor, “A simplified proof of desingularization and applications”, Rev. Mat. Iberoamericana, 21:2 (2005), 349–458 | DOI | MR | Zbl

[9] A. Grothendieck, J. A. Dieudonné, Éléments de géométrie algébrique. I, Springer-Verlag, Berlin–Heidelberg–New York, 1971 | Zbl

[10] D. Mumford, J. Fogarty, Geometric invariant theory, Ergeb. Math. Grenzgeb., 34, Springer-Verlag, Berlin, 1982 | MR | Zbl