The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems
Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 114-132

Voir la notice de l'article provenant de la source Math-Net.Ru

Lyapunov-type oscillation and wandering indicators are defined for solutions of systems of differential equations; these are the average frequency of zeros for the projection of a solution onto some line and the average angular velocity of rotation of a solution about the origin in some basis, respectively. An integral equality relating these indicators is obtained. The indicators introduced are shown to coincide if, prior to averaging, the oscillation indicators are minimized over all possible lines, and the wandering indicators over all possible bases. Bibliography: 17 titles.
Keywords: differential system, oscillation and wandering, characteristic exponents.
Mots-clés : zeros of solutions
@article{SM_2013_204_1_a3,
     author = {I. N. Sergeev},
     title = {The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems},
     journal = {Sbornik. Mathematics},
     pages = {114--132},
     publisher = {mathdoc},
     volume = {204},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_1_a3/}
}
TY  - JOUR
AU  - I. N. Sergeev
TI  - The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 114
EP  - 132
VL  - 204
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_1_a3/
LA  - en
ID  - SM_2013_204_1_a3
ER  - 
%0 Journal Article
%A I. N. Sergeev
%T The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems
%J Sbornik. Mathematics
%D 2013
%P 114-132
%V 204
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_1_a3/
%G en
%F SM_2013_204_1_a3
I. N. Sergeev. The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems. Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 114-132. http://geodesic.mathdoc.fr/item/SM_2013_204_1_a3/