The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems
Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 114-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Lyapunov-type oscillation and wandering indicators are defined for solutions of systems of differential equations; these are the average frequency of zeros for the projection of a solution onto some line and the average angular velocity of rotation of a solution about the origin in some basis, respectively. An integral equality relating these indicators is obtained. The indicators introduced are shown to coincide if, prior to averaging, the oscillation indicators are minimized over all possible lines, and the wandering indicators over all possible bases. Bibliography: 17 titles.
Keywords: differential system, oscillation and wandering, characteristic exponents.
Mots-clés : zeros of solutions
@article{SM_2013_204_1_a3,
     author = {I. N. Sergeev},
     title = {The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems},
     journal = {Sbornik. Mathematics},
     pages = {114--132},
     year = {2013},
     volume = {204},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_1_a3/}
}
TY  - JOUR
AU  - I. N. Sergeev
TI  - The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 114
EP  - 132
VL  - 204
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_1_a3/
LA  - en
ID  - SM_2013_204_1_a3
ER  - 
%0 Journal Article
%A I. N. Sergeev
%T The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems
%J Sbornik. Mathematics
%D 2013
%P 114-132
%V 204
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2013_204_1_a3/
%G en
%F SM_2013_204_1_a3
I. N. Sergeev. The remarkable agreement between the oscillation and wandering characteristics of solutions of differential systems. Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 114-132. http://geodesic.mathdoc.fr/item/SM_2013_204_1_a3/

[1] I. N. Sergeev, “Opredelenie kharakteristik bluzhdaemosti reshenii lineinoi sistemy”, Differents. uravneniya, 46:6 (2010), 902 | Zbl

[2] B. F. Bylov, R. E. Vinograd, D. M. Grobman, V. V. Nemytskii, Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti, Nauka, M., 1966 | MR | Zbl

[3] M. D. Lysak, “Tochnye otsenki skorosti bluzhdaniya reshenii lineinykh sistem”, Differents. uravneniya, 46:11 (2010), 1670–1671

[4] V. V. Mitsenko, “Bluzhdaemost reshenii dvumernykh treugolnykh i diagonalnykh differentsialnykh sistem”, Differents. uravneniya, 48:6 (2012), 907–908

[5] I. N. Sergeev, “Opredelenie polnykh chastot reshenii lineinoi sistemy”, Differents. uravneniya, 45:6 (2009), 908

[6] K. Kuratovskii, Topologiya, v. 1, Mir, M., 1966 ; K. Kuratowski, Topology, v. 1, Academic Press, New York–London, 1968 | MR | Zbl | MR | Zbl

[7] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Lan, SPb., 1999 ; I. P. Natanson, Theory of functions of a real variable, Frederick Ungar Publ. Co., New York, 1955 | MR | Zbl | MR | Zbl

[8] I. N. Sergeev, “Kharakteristiki koleblemosti i bluzhdaemosti reshenii lineinoi differentsialnoi sistemy”, Izv. RAN. Ser. matem., 76:1 (2012), 149–172 | DOI | MR | Zbl

[9] I. N. Sergeev, “Kharakteristiki koleblemosti lyapunovskogo tipa”, Mezhdunarodnaya matematicheskaya konferentsiya “Pyatye Bogdanovskie chteniya po obyknovennym differentsialnym uravneniyam”, In-t matematiki NAN Belarusi, Minsk, 2010, 73–74

[10] D. S. Burlakov, S. V. Tsoi, “Ravenstvo polnoi i vektornoi chastot reshenii lineinoi avtonomnoi sistemy”, Differents. uravneniya, 47:11 (2011), 1662–1663 | Zbl

[11] I. N. Sergeev, “Sravnenie polnykh chastot i pokazatelei bluzhdaemosti reshenii lineinoi sistemy”, Differents. uravneniya, 46:11 (2010), 1667–1668 | Zbl

[12] I. N. Sergeev, “Raspredelenie polnykh chastot i pokazatelei bluzhdaemosti v prostranstve reshenii lineinoi avtonomnoi sistemy”, Mezhdunarodnaya konferentsiya, posvyaschennaya 110-i godovschine I. G. Petrovskogo (XXIII sovmestnoe zasedanie MMO i seminara im. I. G. Petrovskogo), Izd-vo MGU, M., 2011, 342–343

[13] I. N. Sergeev, “Koleblemost i bluzhdaemost reshenii lineinykh differentsialnykh uravnenii malogo poryadka”, Differents. uravneniya, 47:6 (2011), 906–907

[14] D. S. Burlakov, I. N. Sergeev, “Zamechatelnye ravenstva, svyazyvayuschie koleblemost i bluzhdaemost reshenii differentsialnykh sistem”, Differents. uravneniya, 48:6 (2012), 899

[15] I. N. Sergeev, “Opredelenie i svoistva kharakteristicheskikh chastot lineinogo uravneniya”, Tr. sem. im. I. G. Petrovskogo, 25, Izd-vo Mosk. un-ta, M., 2006, 249–294 | MR | Zbl

[16] I. N. Sergeev, “O razlichnoi zavisimosti ot parametra glavnykh chastot nulei, znakov i kornei lineinogo uravneniya”, Differents. uravneniya, 43:6 (2007), 853 | Zbl

[17] V. A. Zorich, Matematicheskii analiz, v. II, Nauka, M., 1984 ; V. A. Zorich, Mathematical analysis, v. II, Universitext, Springer-Verlag, Berlin, 2004 | MR | Zbl | MR | Zbl