On the homotopy type of spaces of Morse functions on surfaces
Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 75-113

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a smooth closed orientable surface. Let $F$ be the space of Morse functions on $M$ with a fixed number of critical points of each index such that at least $\chi(M)+1$ critical points are labelled by different labels (numbered). The notion of a skew cylindric-polyhedral complex is introduced, which generalizes the notion of a polyhedral complex. The skew cylindric-polyhedral complex $\widetilde{\mathbb K}$ (“the complex of framed Morse functions”) associated with the space $F$ is defined. In the case $M=S^2$ the polytope $\widetilde{\mathbb K}$ is finite; its Euler characteristic $\chi(\widetilde{\mathbb K})$ is calculated and the Morse inequalities for its Betti numbers $\beta_j(\widetilde{\mathbb K})$ are obtained. The relation between the homotopy types of the polytope $\widetilde{\mathbb K}$ and the space $F$ of Morse functions equipped with the $C^\infty$-topology is indicated. Bibliography: 51 titles.
Keywords: Morse functions, complex of framed Morse functions, polyhedral complex, $C^\infty$-topology, universal moduli space.
@article{SM_2013_204_1_a2,
     author = {E. A. Kudryavtseva},
     title = {On the homotopy type of spaces of {Morse} functions on surfaces},
     journal = {Sbornik. Mathematics},
     pages = {75--113},
     publisher = {mathdoc},
     volume = {204},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_1_a2/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
TI  - On the homotopy type of spaces of Morse functions on surfaces
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 75
EP  - 113
VL  - 204
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_1_a2/
LA  - en
ID  - SM_2013_204_1_a2
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%T On the homotopy type of spaces of Morse functions on surfaces
%J Sbornik. Mathematics
%D 2013
%P 75-113
%V 204
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_1_a2/
%G en
%F SM_2013_204_1_a2
E. A. Kudryavtseva. On the homotopy type of spaces of Morse functions on surfaces. Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 75-113. http://geodesic.mathdoc.fr/item/SM_2013_204_1_a2/