On the homotopy type of spaces of Morse functions on surfaces
Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 75-113
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $M$ be a smooth closed orientable surface. Let $F$ be the space of Morse functions on $M$ with a fixed number of critical points of each index such that at least $\chi(M)+1$ critical points are labelled by different labels (numbered). The notion of a skew cylindric-polyhedral complex is introduced, which generalizes the notion of a polyhedral complex. The skew cylindric-polyhedral complex $\widetilde{\mathbb K}$ (“the complex of framed Morse functions”) associated with the space $F$ is defined. In the case $M=S^2$ the polytope $\widetilde{\mathbb K}$ is finite; its Euler characteristic $\chi(\widetilde{\mathbb K})$ is calculated and the Morse inequalities for its Betti numbers $\beta_j(\widetilde{\mathbb K})$ are obtained. The relation between the homotopy types of the polytope $\widetilde{\mathbb K}$ and the space $F$ of Morse functions equipped with the $C^\infty$-topology is indicated. Bibliography: 51 titles.
Keywords: Morse functions, complex of framed Morse functions, polyhedral complex, $C^\infty$-topology, universal moduli space.
@article{SM_2013_204_1_a2,
     author = {E. A. Kudryavtseva},
     title = {On the homotopy type of spaces of {Morse} functions on surfaces},
     journal = {Sbornik. Mathematics},
     pages = {75--113},
     year = {2013},
     volume = {204},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_1_a2/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
TI  - On the homotopy type of spaces of Morse functions on surfaces
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 75
EP  - 113
VL  - 204
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_1_a2/
LA  - en
ID  - SM_2013_204_1_a2
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%T On the homotopy type of spaces of Morse functions on surfaces
%J Sbornik. Mathematics
%D 2013
%P 75-113
%V 204
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2013_204_1_a2/
%G en
%F SM_2013_204_1_a2
E. A. Kudryavtseva. On the homotopy type of spaces of Morse functions on surfaces. Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 75-113. http://geodesic.mathdoc.fr/item/SM_2013_204_1_a2/

[1] E. A. Kudryavtseva, D. A. Permyakov, “Framed Morse functions on surfaces”, Sb. Math., 201:4 (2010), 501–567 | DOI | DOI | MR | Zbl

[2] E. A. Kudryavtseva, “The topology of spaces of Morse functions on surfaces”, Math. Notes, 92:2 (2012), 219–236 | DOI | DOI

[3] E. A. Kudryavtseva, “Special framed Morse functions on surfaces”, Moscow Univ. Math. Bull., 67:4 (2012), 151–157 | DOI

[4] M. Gromov, Partial differential relations, Ergeb. Math. Grenzgeb. (3), 9, Springer-Verlag, Berlin, 1986 | MR | MR | Zbl

[5] K. Igusa, “Higher singularities of smooth functions are unnecessary”, Ann. of Math. (2), 119:1 (1984), 1–58 | DOI | MR | Zbl

[6] V. A. Vasil'ev, “Topology of spaces of functions without compound singularities”, Funct. Anal. Appl., 23:4 (1989), 277–286 | DOI | MR | Zbl

[7] J. M. Franks, Homology and dynamical systems, CBMS Regional Conf. Ser. in Math., 49, Amer. Math. Soc., Providence, RI, 1982 | MR | Zbl

[8] A. E. Hatcher, “Higher simple homotopy theory”, Ann. of Math. (2), 102:1 (1975), 101–137 | DOI | MR | Zbl

[9] A. Chenciner, F. Laudenbach, “Morse 2-jet space and $h$-principle”, Bull. Braz. Math. Soc. (N.S.), 40:4 (2009), 455–463 | DOI | MR | Zbl

[10] E. A. Kudryavtseva, “Connected components of spaces of Morse functions with fixed critical points”, Moscow Univ. Math. Bull., 67:1 (2012), 1–10 | DOI

[11] B. Farb, N. V. Ivanov, “The Torelli geometry and its applications: research announcement”, Math. Res. Lett., 12:2–3 (2005), 293–301 | MR | Zbl

[12] W. J. Harvey, “Geometric structure of surface mapping class groups”, Homological group theory (Durham, 1977), London Math. Soc. Lecture Note Ser., 36, Cambridge Univ. Press, Cambridge, 1979, 255–269 | MR | Zbl

[13] J. L. Harer, “The virtual cohomological dimension of the mapping class group of an orientable surface”, Invent. Math., 84:1 (1986), 157–176 | DOI | MR | Zbl

[14] N. V. Ivanov, “Automorphisms of complexes of curves and of Teichmuller spaces”, Progress in knot theory and related topics, Travaux en Cours, 56, Hermann, Paris, 1997, 113–120 | MR | Zbl

[15] A. Hatcher, W. Thurston, “A presentation for the mapping class group of a closed orientable surface”, Topology, 19:3 (1980), 221–237 | DOI | MR | Zbl

[16] D. Margalit, “Automorphisms of the pants complex”, Duke Math. J., 121:3 (2004), 457–479 | DOI | MR | Zbl

[17] S. Matveev, M. Polyak, “Cubic complexes and finite type invariants”, Invariants of knots and 3-manifolds (Kyoto, 2001), Geom. Topol. Monogr., 4, Geom. Topol. Publ., Coventry, 2002, 215–233 | DOI | MR | Zbl

[18] E. A. Kudryavtseva, “Realization of smooth functions on surfaces as height functions”, Sb. Math., 190:3 (1999), 349–405 | DOI | DOI | MR | Zbl

[19] V. V. Sharko, “Funktsii na poverkhnostyakh, I”, Nekotorye problemy sovremennoi matematiki, Naukova dumka, Kiev, 1998, 408–434 | MR

[20] S. Maksymenko, “Path-components of Morse mappings spaces of surfaces”, Comment. Math. Helv., 80:3 (2005), 655–690 | DOI | MR | Zbl

[21] Yu. Burman, “Morse theory for functions of two variables without critical points”, Funct. Differ. Equ., 3:1–2 (1995), 31–43 | MR | Zbl

[22] Yu. M. Burman, “Triangulations of surfaces with boundary and the homotopy principle for functions without critical points”, Ann. Global Anal. Geom., 17:3 (1999), 221–238 | DOI | MR | Zbl

[23] V. I. Arnol'd, “The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups”, Russian Math. Surveys, 47:1 (1992), 1–51 | DOI | MR | Zbl

[24] V. I. Arnol'd, “Topological classification of trigonometric polynomials and combinatorics of graphs with an equal number of vertices and edges”, Funct. Anal. Appl., 30:1 (1996), 1–14 | DOI | DOI | MR | Zbl

[25] E. V. Kulinich, “On topologically equivalent Morse functions on surfaces”, Methods Funct. Anal. Topology, 4:1 (1998), 59–64 | MR | Zbl

[26] V. I. Arnold, “Smooth functions statistics”, Funct. Anal. Other Math., 1:2 (2006), 111–118 | DOI | MR | Zbl

[27] V. I. Arnold, “Topological classification of Morse functions and generalisations of Hilbert's 16-th problem”, Math. Phys. Anal. Geom., 10:3 (2007), 227–236 | DOI | MR | Zbl

[28] V. I. Arnol'd, “Topological classification of Morse polynomials”, Proc. Steklov Inst. Math., 268 (2010), 32–48 | DOI | MR | Zbl

[29] S. Maksymenko, “Homotopy types of stabilizers and orbits of Morse functions on surfaces”, Ann. Global Anal. Geom., 29:3 (2006), 241–285 | DOI | MR | Zbl

[30] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl

[31] S. V. Matveev, A. T. Fomenko, “Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds”, Russian Math. Surveys, 43:1 (1988), 3–24 | DOI | MR | Zbl

[32] S. V. Matveev, A. T. Fomenko, V. V. Sharko, “Round Morse functions and isoenergy surfaces of integrable Hamiltonian systems”, Math. USSR-Sb., 63:2 (1989), 319–336 | DOI | MR | Zbl

[33] S. V. Matveev, A. T. Fomenko, “Morse-type theory for integrable Hamiltonian systems with tame integrals”, Math. Notes, 43:5 (1988), 382–386 | DOI | MR | Zbl | Zbl

[34] A. T. Fomenko, Kh. Tsishang, “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 ; 185:5 (1994), 27–78 | DOI | MR | Zbl | Zbl | MR | Zbl

[35] A. V. Bolsinov, A. T. Fomenko, “Orbital equivalence of integrable Hamiltonian systems with two degrees of freedom. A classification theorem. I, II”, Russian Acad. Sci. Sb. Math., 81:2 (1995), 421–465 ; 82:1 (1995), 21–63 | DOI | DOI | MR | MR | Zbl | Zbl

[36] A. V. Bolsinov, A. T. Fomenko, Vvedenie v topologiyu integriruemykh gamiltonovykh sistem, Nauka, M., 1997 | MR | Zbl

[37] E. A. Kudryavtseva, “Ustoichivye topologicheskie i gladkie invarianty sopryazhennosti gamiltonovykh sistem na poverkhnostyakh”, Topologicheskie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998, 147–202

[38] E. A. Kudryavtseva, “Stable conjugation invariants of Hamiltonian systems on two-dimensional surfaces”, Dokl. Math., 58:1 (1998), 67–70 | MR | Zbl

[39] Yu. A. Brailov, E. A. Kudryavtseva, “Stable topological non-conjugacy of Hamiltonian systems on two-dimensional surfaces”, Moscow Univ. Math. Bull., 54:2 (1999), 20–27 | MR | Zbl

[40] E. A. Kudryavtseva, “Uniform Morse lemma and isotopy criterion for Morse functions on surfaces”, Moscow Univ. Math. Bull., 64:4 (2009), 150–158 | DOI | MR

[41] C. J. Earle, J. Eells, “The diffeomorphism group of a compact Riemann surface”, Bull. Amer. Math. Soc., 73:4 (1967), 557–559 | DOI | MR | Zbl

[42] C. J. Earle, J. Eells, “A fibre bundle description of Teichmüller theory”, J. Differential Geometry, 3 (1969), 19–43 | MR | Zbl

[43] S. Smale, “Diffeomorphisms of the 2-sphere”, Proc. Amer. Math. Soc., 10:4 (1959), 621–626 | DOI | MR | Zbl

[44] M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999 | MR | Zbl

[45] A. T. Fomenko, D. B. Fuks, Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR | Zbl

[46] G. M. Ziegler, Lectures on polytopes, Grad. Texts in Math., 152, Springer-Verlag, Berlin–New York, 1995 | MR | Zbl

[47] M. Dehn, “Die Gruppe der Abbildungsklassen”, Acta Math., 69:1 (1938), 135–206 | DOI | MR | Zbl

[48] J. S. Birman, A. Lubotzky, J. McCarthy, “Abelian and solvable subgroups of the mapping class groups”, Duke Math. J., 50:4 (1983), 1107–1120 | DOI | MR | Zbl

[49] D. A. Permyakov, “Abelevy podgruppy gruppy diffeomorfizmov, porozhdennye skruchivaniyami Dena”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2013, no. 1, 26–32

[50] G. Reeb, “Sur les points singuliers d'une forme de Pfaff completement intégrable ou d'une fonction numérique”, C. R. Acad. Sci. Paris, 222 (1946), 847–849 | MR | Zbl

[51] A. S. Kronrod, “O funktsiyakh dvukh peremennykh”, UMN, 5:1 (1950), 24–134 | MR | Zbl