A~family of Nikishin systems with periodic recurrence coefficients
Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 43-74

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose we have a Nikishin system of $p$ measures with the $k$th generating measure of the Nikishin system supported on an interval $\Delta_k\subset\mathbb R$ with $\Delta_k\cap\Delta_{k+1}=\varnothing$ for all $k$. It is well known that the corresponding staircase sequence of multiple orthogonal polynomials satisfies a $(p+2)$-term recurrence relation whose recurrence coefficients, under appropriate assumptions on the generating measures, have periodic limits of period $p$. (The limit values depend only on the positions of the intervals $\Delta_k$.) Taking these periodic limit values as the coefficients of a new $(p+2)$-term recurrence relation, we construct a canonical sequence of monic polynomials $\{P_{n}\}_{n=0}^\infty$, the so-called Chebyshev-Nikishin polynomials. We show that the polynomials $P_n$ themselves form a sequence of multiple orthogonal polynomials with respect to some Nikishin system of measures, with the $k$th generating measure being absolutely continuous on $\Delta_k$. In this way we generalize a result of the third author and Rocha [22] for the case $p=2$. The proof uses the connection with block Toeplitz matrices, and with a certain Riemann surface of genus zero. We also obtain strong asymptotics and an exact Widom-type formula for functions of the second kind of the Nikishin system for $\{P_{n}\}_{n=0}^\infty$. Bibliography: 27 titles.
Keywords: Nikishin system, block Toeplitz matrix, strong asymptotics, ratio asymptotics.
Mots-clés : multiple orthogonal polynomial, Hermite-Padé approximant
@article{SM_2013_204_1_a1,
     author = {S. Delvaux and A. L\'opez and G. L\'opez Lagomasino},
     title = {A~family of {Nikishin} systems with periodic recurrence coefficients},
     journal = {Sbornik. Mathematics},
     pages = {43--74},
     publisher = {mathdoc},
     volume = {204},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_1_a1/}
}
TY  - JOUR
AU  - S. Delvaux
AU  - A. López
AU  - G. López Lagomasino
TI  - A~family of Nikishin systems with periodic recurrence coefficients
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 43
EP  - 74
VL  - 204
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_1_a1/
LA  - en
ID  - SM_2013_204_1_a1
ER  - 
%0 Journal Article
%A S. Delvaux
%A A. López
%A G. López Lagomasino
%T A~family of Nikishin systems with periodic recurrence coefficients
%J Sbornik. Mathematics
%D 2013
%P 43-74
%V 204
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_1_a1/
%G en
%F SM_2013_204_1_a1
S. Delvaux; A. López; G. López Lagomasino. A~family of Nikishin systems with periodic recurrence coefficients. Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 43-74. http://geodesic.mathdoc.fr/item/SM_2013_204_1_a1/