A~family of Nikishin systems with periodic recurrence coefficients
Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 43-74
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose we have a Nikishin system of $p$ measures with the $k$th generating measure of the Nikishin system supported on an interval $\Delta_k\subset\mathbb R$ with $\Delta_k\cap\Delta_{k+1}=\varnothing$ for all $k$. It is well known that the corresponding staircase sequence of multiple orthogonal polynomials satisfies a $(p+2)$-term recurrence relation whose recurrence coefficients, under appropriate assumptions on the generating measures, have periodic limits of period $p$. (The limit values depend only on the positions of the intervals $\Delta_k$.) Taking these periodic limit values as the coefficients of a new $(p+2)$-term recurrence
relation, we construct a canonical sequence of monic polynomials $\{P_{n}\}_{n=0}^\infty$, the so-called Chebyshev-Nikishin polynomials. We show that the polynomials $P_n$ themselves form a sequence of multiple orthogonal polynomials with respect to some Nikishin system of measures, with the $k$th generating measure being absolutely continuous on $\Delta_k$. In this way we generalize a result of the third author and Rocha [22] for the case $p=2$. The proof uses the connection with block Toeplitz matrices, and with a certain Riemann surface of genus zero. We also obtain strong asymptotics and an exact Widom-type formula for
functions of the second kind of the Nikishin system for $\{P_{n}\}_{n=0}^\infty$.
Bibliography: 27 titles.
Keywords:
Nikishin system, block Toeplitz matrix, strong asymptotics, ratio asymptotics.
Mots-clés : multiple orthogonal polynomial, Hermite-Padé approximant
Mots-clés : multiple orthogonal polynomial, Hermite-Padé approximant
@article{SM_2013_204_1_a1,
author = {S. Delvaux and A. L\'opez and G. L\'opez Lagomasino},
title = {A~family of {Nikishin} systems with periodic recurrence coefficients},
journal = {Sbornik. Mathematics},
pages = {43--74},
publisher = {mathdoc},
volume = {204},
number = {1},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_1_a1/}
}
TY - JOUR AU - S. Delvaux AU - A. López AU - G. López Lagomasino TI - A~family of Nikishin systems with periodic recurrence coefficients JO - Sbornik. Mathematics PY - 2013 SP - 43 EP - 74 VL - 204 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2013_204_1_a1/ LA - en ID - SM_2013_204_1_a1 ER -
S. Delvaux; A. López; G. López Lagomasino. A~family of Nikishin systems with periodic recurrence coefficients. Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 43-74. http://geodesic.mathdoc.fr/item/SM_2013_204_1_a1/