A family of Nikishin systems with periodic recurrence coefficients
Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 43-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Suppose we have a Nikishin system of $p$ measures with the $k$th generating measure of the Nikishin system supported on an interval $\Delta_k\subset\mathbb R$ with $\Delta_k\cap\Delta_{k+1}=\varnothing$ for all $k$. It is well known that the corresponding staircase sequence of multiple orthogonal polynomials satisfies a $(p+2)$-term recurrence relation whose recurrence coefficients, under appropriate assumptions on the generating measures, have periodic limits of period $p$. (The limit values depend only on the positions of the intervals $\Delta_k$.) Taking these periodic limit values as the coefficients of a new $(p+2)$-term recurrence relation, we construct a canonical sequence of monic polynomials $\{P_{n}\}_{n=0}^\infty$, the so-called Chebyshev-Nikishin polynomials. We show that the polynomials $P_n$ themselves form a sequence of multiple orthogonal polynomials with respect to some Nikishin system of measures, with the $k$th generating measure being absolutely continuous on $\Delta_k$. In this way we generalize a result of the third author and Rocha [22] for the case $p=2$. The proof uses the connection with block Toeplitz matrices, and with a certain Riemann surface of genus zero. We also obtain strong asymptotics and an exact Widom-type formula for functions of the second kind of the Nikishin system for $\{P_{n}\}_{n=0}^\infty$. Bibliography: 27 titles.
Keywords: Nikishin system, block Toeplitz matrix, strong asymptotics, ratio asymptotics.
Mots-clés : multiple orthogonal polynomial, Hermite-Padé approximant
@article{SM_2013_204_1_a1,
     author = {S. Delvaux and A. L\'opez and G. L\'opez Lagomasino},
     title = {A~family of {Nikishin} systems with periodic recurrence coefficients},
     journal = {Sbornik. Mathematics},
     pages = {43--74},
     year = {2013},
     volume = {204},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_1_a1/}
}
TY  - JOUR
AU  - S. Delvaux
AU  - A. López
AU  - G. López Lagomasino
TI  - A family of Nikishin systems with periodic recurrence coefficients
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 43
EP  - 74
VL  - 204
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_1_a1/
LA  - en
ID  - SM_2013_204_1_a1
ER  - 
%0 Journal Article
%A S. Delvaux
%A A. López
%A G. López Lagomasino
%T A family of Nikishin systems with periodic recurrence coefficients
%J Sbornik. Mathematics
%D 2013
%P 43-74
%V 204
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2013_204_1_a1/
%G en
%F SM_2013_204_1_a1
S. Delvaux; A. López; G. López Lagomasino. A family of Nikishin systems with periodic recurrence coefficients. Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 43-74. http://geodesic.mathdoc.fr/item/SM_2013_204_1_a1/

[1] G. López Lagomasino, I. A. Rocha, “A canonical family of multiple orthogonal polynomials for Nikishin systems”, J. Math. Anal. Appl., 372:2 (2010), 390–401 | DOI | MR | Zbl

[2] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | DOI | MR | Zbl

[3] E. M. Nikishin, “On simultaneous Padé approximants”, Math. USSR-Sb., 41:4 (1982), 409–425 | DOI | MR | Zbl

[4] A. I. Aptekarev, “Strong asymptotics of multiply orthogonal polynomials for Nikishin systems”, Sb. Math., 190:5 (1999), 631–669 | DOI | DOI | MR | Zbl

[5] A. I. Aptekarev, V. A. Kaliaguine, G. López Lagomasino, I. A. Rocha, “On the limit behavior of recurrence coefficients for multiple orthogonal polynomials”, J. Approx. Theory, 139:1–2 (2006), 346–370 | DOI | MR | Zbl

[6] A. I. Aptekarev, V. A. Kaliaguine, E. B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | DOI | MR | Zbl

[7] A. I. Aptekarev, G. López Lagomasino, I. A. Rocha, “Ratio asymptotics of Hermite–Padé polynomials for Nikishin systems”, Sb. Math., 196:8 (2005), 1089–1107 | DOI | DOI | MR | Zbl

[8] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | DOI | MR | Zbl

[9] J. Bustamante, G. López Lagomasino, “Hermite–Padé approximation for Nikishin systems of analytic functions”, Russian Acad. Sci. Sb. Math., 77:2 (1994), 367–384 | DOI | MR | Zbl

[10] E. Coussement, W. Van Assche, “Multiple orthogonal polynomials associated with the modified Bessel functions of the first kind”, Constr. Approx., 19:2 (2003), 237–263 | DOI | MR | Zbl

[11] S. Delvaux, A. López, High order three-term recursions, Riemann–Hilbert minors and Nikishin systems on star-like sets, arXiv: 1202.4000 | DOI

[12] K. Driver, H. Stahl, “Normality in Nikishin systems”, Indag. Math. (N.S.), 5:2 (1994), 161–187 | DOI | MR | Zbl

[13] U. Fidalgo, G. López Lagomasino, “Nikishin systems are perfect”, Constr. Approx., 34:3 (2011), 297–356 | DOI | MR | Zbl

[14] A. B. J. Kuijlaars, “Multiple orthogonal polynomial ensembles”, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., 507, Amer. Math. Soc., Providence, RI, 2010, 155–176 | DOI | MR | Zbl

[15] A. B. J. Kuijlaars, A. Martínez-Finkelshtein, F. Wielonsky, “Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights”, Comm. Math. Phys., 286:1 (2009), 217–275 | DOI | MR | Zbl

[16] A. López García, “Asymptotics of multiple orthogonal polynomials for a system of two measures supported on a starlike set”, J. Approx. Theory, 163:9 (2011), 1146–1184 | DOI | MR

[17] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl | Zbl

[18] M. G. Krein, A. A. Nudel'man, The Markov moment problem and extremal problems, Transl. of Math. Monographs, 50, Amer. Math. Soc., Providence, RI, 1977 | MR | Zbl

[19] H. Widom, “Asymptotic behavior of block Toeplitz matrices and determinants”, Advances in Math., 13 (1974), 284–322 | DOI | MR | Zbl

[20] V. A. Kalyagin, “Hermite–Padé approximants and spectral analysis of nonsymmetric operators”, Russian Acad. Sci. Sb. Math., 82:1 (1995), 199–216 | DOI | MR | Zbl

[21] J. Van Iseghem, “Vector orthogonal relations. Vector QD-algorithm”, J. Comput. Appl. Math., 19:1 (1987), 141–150 | DOI | MR | Zbl

[22] V. A. Kaliaguine, “The operator moment problem, vector continued fractions and an explicit form of the Favard theorem for vector orthogonal polynomials”, J. Comput. Appl. Math., 65:1–3 (1995), 181–193 | DOI | MR | Zbl

[23] A. I. Aptekarev, A. B. J. Kuijlaars, “Hermite–Padé approximations and multiple orthogonal polynomial ensembles”, Russian Math. Surveys, 66:6 (2011), 1133–1199 | DOI | DOI | MR | Zbl

[24] S. Delvaux, “Equilibrium problem for the eigenvalues of banded block Toeplitz matrices”, Math. Nachr., 285:16 (2012), 1935–1962, arXiv: 1101.2644 | DOI

[25] M. Bender, S. Delvaux, A. B. J. Kuijlaars, “Multiple Meixner–Pollaczek polynomials and the six-vertex model”, J. Approx. Theory, 163:11 (2011), 1606–1637 | DOI | MR | Zbl

[26] A. Maté, P. Nevai, “A generalization of Poincaré's theorem for recurrence equations”, J. Approx. Theory, 63:1 (1990), 92–97 | DOI | MR | Zbl

[27] M. Duits, A. B. J. Kuijlaars, “An equilibrium problem for the limiting eigenvalue distribution of banded Toeplitz matrices”, SIAM J. Matrix Anal. Appl., 30:1 (2008), 173–196 | DOI | MR | Zbl