Mots-clés : multiple orthogonal polynomial, Hermite-Padé approximant
@article{SM_2013_204_1_a1,
author = {S. Delvaux and A. L\'opez and G. L\'opez Lagomasino},
title = {A~family of {Nikishin} systems with periodic recurrence coefficients},
journal = {Sbornik. Mathematics},
pages = {43--74},
year = {2013},
volume = {204},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_1_a1/}
}
S. Delvaux; A. López; G. López Lagomasino. A family of Nikishin systems with periodic recurrence coefficients. Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 43-74. http://geodesic.mathdoc.fr/item/SM_2013_204_1_a1/
[1] G. López Lagomasino, I. A. Rocha, “A canonical family of multiple orthogonal polynomials for Nikishin systems”, J. Math. Anal. Appl., 372:2 (2010), 390–401 | DOI | MR | Zbl
[2] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | DOI | MR | Zbl
[3] E. M. Nikishin, “On simultaneous Padé approximants”, Math. USSR-Sb., 41:4 (1982), 409–425 | DOI | MR | Zbl
[4] A. I. Aptekarev, “Strong asymptotics of multiply orthogonal polynomials for Nikishin systems”, Sb. Math., 190:5 (1999), 631–669 | DOI | DOI | MR | Zbl
[5] A. I. Aptekarev, V. A. Kaliaguine, G. López Lagomasino, I. A. Rocha, “On the limit behavior of recurrence coefficients for multiple orthogonal polynomials”, J. Approx. Theory, 139:1–2 (2006), 346–370 | DOI | MR | Zbl
[6] A. I. Aptekarev, V. A. Kaliaguine, E. B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | DOI | MR | Zbl
[7] A. I. Aptekarev, G. López Lagomasino, I. A. Rocha, “Ratio asymptotics of Hermite–Padé polynomials for Nikishin systems”, Sb. Math., 196:8 (2005), 1089–1107 | DOI | DOI | MR | Zbl
[8] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | DOI | MR | Zbl
[9] J. Bustamante, G. López Lagomasino, “Hermite–Padé approximation for Nikishin systems of analytic functions”, Russian Acad. Sci. Sb. Math., 77:2 (1994), 367–384 | DOI | MR | Zbl
[10] E. Coussement, W. Van Assche, “Multiple orthogonal polynomials associated with the modified Bessel functions of the first kind”, Constr. Approx., 19:2 (2003), 237–263 | DOI | MR | Zbl
[11] S. Delvaux, A. López, High order three-term recursions, Riemann–Hilbert minors and Nikishin systems on star-like sets, arXiv: 1202.4000 | DOI
[12] K. Driver, H. Stahl, “Normality in Nikishin systems”, Indag. Math. (N.S.), 5:2 (1994), 161–187 | DOI | MR | Zbl
[13] U. Fidalgo, G. López Lagomasino, “Nikishin systems are perfect”, Constr. Approx., 34:3 (2011), 297–356 | DOI | MR | Zbl
[14] A. B. J. Kuijlaars, “Multiple orthogonal polynomial ensembles”, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., 507, Amer. Math. Soc., Providence, RI, 2010, 155–176 | DOI | MR | Zbl
[15] A. B. J. Kuijlaars, A. Martínez-Finkelshtein, F. Wielonsky, “Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights”, Comm. Math. Phys., 286:1 (2009), 217–275 | DOI | MR | Zbl
[16] A. López García, “Asymptotics of multiple orthogonal polynomials for a system of two measures supported on a starlike set”, J. Approx. Theory, 163:9 (2011), 1146–1184 | DOI | MR
[17] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl | Zbl
[18] M. G. Krein, A. A. Nudel'man, The Markov moment problem and extremal problems, Transl. of Math. Monographs, 50, Amer. Math. Soc., Providence, RI, 1977 | MR | Zbl
[19] H. Widom, “Asymptotic behavior of block Toeplitz matrices and determinants”, Advances in Math., 13 (1974), 284–322 | DOI | MR | Zbl
[20] V. A. Kalyagin, “Hermite–Padé approximants and spectral analysis of nonsymmetric operators”, Russian Acad. Sci. Sb. Math., 82:1 (1995), 199–216 | DOI | MR | Zbl
[21] J. Van Iseghem, “Vector orthogonal relations. Vector QD-algorithm”, J. Comput. Appl. Math., 19:1 (1987), 141–150 | DOI | MR | Zbl
[22] V. A. Kaliaguine, “The operator moment problem, vector continued fractions and an explicit form of the Favard theorem for vector orthogonal polynomials”, J. Comput. Appl. Math., 65:1–3 (1995), 181–193 | DOI | MR | Zbl
[23] A. I. Aptekarev, A. B. J. Kuijlaars, “Hermite–Padé approximations and multiple orthogonal polynomial ensembles”, Russian Math. Surveys, 66:6 (2011), 1133–1199 | DOI | DOI | MR | Zbl
[24] S. Delvaux, “Equilibrium problem for the eigenvalues of banded block Toeplitz matrices”, Math. Nachr., 285:16 (2012), 1935–1962, arXiv: 1101.2644 | DOI
[25] M. Bender, S. Delvaux, A. B. J. Kuijlaars, “Multiple Meixner–Pollaczek polynomials and the six-vertex model”, J. Approx. Theory, 163:11 (2011), 1606–1637 | DOI | MR | Zbl
[26] A. Maté, P. Nevai, “A generalization of Poincaré's theorem for recurrence equations”, J. Approx. Theory, 63:1 (1990), 92–97 | DOI | MR | Zbl
[27] M. Duits, A. B. J. Kuijlaars, “An equilibrium problem for the limiting eigenvalue distribution of banded Toeplitz matrices”, SIAM J. Matrix Anal. Appl., 30:1 (2008), 173–196 | DOI | MR | Zbl