Regular attractors and nonautonomous perturbations of them
Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 1-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study regular global attractors of dissipative dynamical semigroups with discrete or continuous time and we investigate attractors for nonautonomous perturbations of such semigroups. The main theorem states that the regularity of global attractors is preserved under small nonautonomous perturbations. Moreover, nonautonomous regular global attractors remain exponential and robust. We apply these general results to model nonautonomous reaction-diffusion systems in a bounded domain of $\mathbb R^3$ with time-dependent external forces. Bibliography: 22 titles.
Keywords: dynamical semigroups and processes, regular attractors, uniform attractors, pullback attractors.
@article{SM_2013_204_1_a0,
     author = {M. I. Vishik and S. V. Zelik and V. V. Chepyzhov},
     title = {Regular attractors and nonautonomous perturbations of them},
     journal = {Sbornik. Mathematics},
     pages = {1--42},
     year = {2013},
     volume = {204},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_1_a0/}
}
TY  - JOUR
AU  - M. I. Vishik
AU  - S. V. Zelik
AU  - V. V. Chepyzhov
TI  - Regular attractors and nonautonomous perturbations of them
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1
EP  - 42
VL  - 204
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_1_a0/
LA  - en
ID  - SM_2013_204_1_a0
ER  - 
%0 Journal Article
%A M. I. Vishik
%A S. V. Zelik
%A V. V. Chepyzhov
%T Regular attractors and nonautonomous perturbations of them
%J Sbornik. Mathematics
%D 2013
%P 1-42
%V 204
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2013_204_1_a0/
%G en
%F SM_2013_204_1_a0
M. I. Vishik; S. V. Zelik; V. V. Chepyzhov. Regular attractors and nonautonomous perturbations of them. Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 1-42. http://geodesic.mathdoc.fr/item/SM_2013_204_1_a0/

[1] A. V. Babin, M. I. Vishik, “Regular attractors of semigroups and evolution equations”, J. Math. Pures Appl. (9), 62:4 (1983), 441–491 | MR | Zbl

[2] A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland, Amsterdam, 1992 | MR | MR | Zbl | Zbl

[3] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, Springer–Verlag, New York, 1988 | MR | Zbl

[4] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[5] J. K. Hale, G. Rougel, “Lower semicontinuity of attractors of gradient systems and applications”, Ann. Mat. Pura Appl. (4), 154:1 (1989), 281–326 | DOI | MR | Zbl

[6] A. Yu. Goritskij, M. I. Vishik, “Local integral manifolds for a nonautonomous parabolic equation”, J. Math. Sci. (New York), 85:6 (1997), 2428–2439 | DOI | MR | Zbl

[7] A. Yu. Goritsky, M. I. Vishik, “Integral manifolds for nonautonomous equations”, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 21 (1997), 106–146 | MR

[8] M. Efendiev, S. Zelik, “The regular attractor for the reaction-diffusion system with a nonlinearity rapidly oscillating in time and its averaging”, Adv. Differential Equations, 8:6 (2003), 673–732 | MR | Zbl

[9] A. Haraux, Systèmes dynamiques dissipatifs et applications, Rech. Math. Appl., 17, Masson, Paris, 1991 | MR | Zbl

[10] V. V. Chepyzhov, M. I. Vishik, “Attractors of nonautonomous dynamical systems and their dimension”, J. Math. Pures Appl. (9), 73:3 (1994), 279–333 | MR | Zbl

[11] V. V. Chepyzhov, M. I. Vishik, “A Hausdorff dimension estimate for kernel sections of nonautonomous evolution equations”, Indiana Univ. Math. J., 42:3 (1993), 1057–1076 | DOI | MR

[12] H. Crauel, F. Flandoli, “Attractors for random dynamical systems”, Probab. Theory Related Fields, 100:3 (1994), 365–393 | DOI | MR | Zbl

[13] P. E. Kloeden, B. Schmalfuss, “Nonautonomous systems, cocycle attractors and variable time-step discretization”, Numer. Algorithms, 14:1–3 (1997), 141–152 | DOI | MR | Zbl

[14] A. N. Carvalho, J. A. Langa, J. C. Robinson, A. Suárez, “Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system”, J. Differential Equations, 236:2 (2007), 570–603 | DOI | MR | Zbl

[15] A. N. Carvalho, J. A. Langa, “An extension of the concept of gradient semigroups which is stable under perturbation”, J. Differential Equations, 246:7 (2009), 2646–2668 | DOI | MR | Zbl

[16] S. Zelik, “Global averaging and parametric resonances in damped semilinear wave equations”, Proc. Roy. Soc. Edinburgh Sect. A, 136:5 (2006), 1053–1097 | DOI | MR | Zbl

[17] M. I. Vishik, V. V. Chepyzhov, “Approximation of trajectories lying on a global attractor of a hyperbolic equation with exterior force rapidly oscillating in time”, Sb. Math., 194:9 (2003), 1273–1300 | DOI | DOI | MR | Zbl

[18] M. I. Vishik, S. Zelik, “Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit”, submitted

[19] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, NY, 1957, 1961 | MR | MR | MR | Zbl | Zbl

[20] E. Zeidler, Nonlinear functional analysis and its applications. I. Fixed-point theorems, Springer-Verlag, New York, 1986 | MR | Zbl

[21] S. Agmon, L. Nirenberg, “Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space”, Comm. Pure Appl. Math., 20 (1967), 207–229 | DOI | MR | Zbl

[22] M. Efendiev, A. Miranville, S. Zelik, “Infinite dimensional exponential attractors for a non-autonomous reaction-diffusion system”, Math. Nachr., 248–249 (2003), 72–96 | DOI | MR | Zbl