@article{SM_2013_204_1_a0,
author = {M. I. Vishik and S. V. Zelik and V. V. Chepyzhov},
title = {Regular attractors and nonautonomous perturbations of them},
journal = {Sbornik. Mathematics},
pages = {1--42},
year = {2013},
volume = {204},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_1_a0/}
}
M. I. Vishik; S. V. Zelik; V. V. Chepyzhov. Regular attractors and nonautonomous perturbations of them. Sbornik. Mathematics, Tome 204 (2013) no. 1, pp. 1-42. http://geodesic.mathdoc.fr/item/SM_2013_204_1_a0/
[1] A. V. Babin, M. I. Vishik, “Regular attractors of semigroups and evolution equations”, J. Math. Pures Appl. (9), 62:4 (1983), 441–491 | MR | Zbl
[2] A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland, Amsterdam, 1992 | MR | MR | Zbl | Zbl
[3] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., 68, Springer–Verlag, New York, 1988 | MR | Zbl
[4] V. V. Chepyzhov, M. I. Vishik, Attractors for equations of mathematical physics, Amer. Math. Soc. Colloq. Publ., 49, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[5] J. K. Hale, G. Rougel, “Lower semicontinuity of attractors of gradient systems and applications”, Ann. Mat. Pura Appl. (4), 154:1 (1989), 281–326 | DOI | MR | Zbl
[6] A. Yu. Goritskij, M. I. Vishik, “Local integral manifolds for a nonautonomous parabolic equation”, J. Math. Sci. (New York), 85:6 (1997), 2428–2439 | DOI | MR | Zbl
[7] A. Yu. Goritsky, M. I. Vishik, “Integral manifolds for nonautonomous equations”, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 21 (1997), 106–146 | MR
[8] M. Efendiev, S. Zelik, “The regular attractor for the reaction-diffusion system with a nonlinearity rapidly oscillating in time and its averaging”, Adv. Differential Equations, 8:6 (2003), 673–732 | MR | Zbl
[9] A. Haraux, Systèmes dynamiques dissipatifs et applications, Rech. Math. Appl., 17, Masson, Paris, 1991 | MR | Zbl
[10] V. V. Chepyzhov, M. I. Vishik, “Attractors of nonautonomous dynamical systems and their dimension”, J. Math. Pures Appl. (9), 73:3 (1994), 279–333 | MR | Zbl
[11] V. V. Chepyzhov, M. I. Vishik, “A Hausdorff dimension estimate for kernel sections of nonautonomous evolution equations”, Indiana Univ. Math. J., 42:3 (1993), 1057–1076 | DOI | MR
[12] H. Crauel, F. Flandoli, “Attractors for random dynamical systems”, Probab. Theory Related Fields, 100:3 (1994), 365–393 | DOI | MR | Zbl
[13] P. E. Kloeden, B. Schmalfuss, “Nonautonomous systems, cocycle attractors and variable time-step discretization”, Numer. Algorithms, 14:1–3 (1997), 141–152 | DOI | MR | Zbl
[14] A. N. Carvalho, J. A. Langa, J. C. Robinson, A. Suárez, “Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system”, J. Differential Equations, 236:2 (2007), 570–603 | DOI | MR | Zbl
[15] A. N. Carvalho, J. A. Langa, “An extension of the concept of gradient semigroups which is stable under perturbation”, J. Differential Equations, 246:7 (2009), 2646–2668 | DOI | MR | Zbl
[16] S. Zelik, “Global averaging and parametric resonances in damped semilinear wave equations”, Proc. Roy. Soc. Edinburgh Sect. A, 136:5 (2006), 1053–1097 | DOI | MR | Zbl
[17] M. I. Vishik, V. V. Chepyzhov, “Approximation of trajectories lying on a global attractor of a hyperbolic equation with exterior force rapidly oscillating in time”, Sb. Math., 194:9 (2003), 1273–1300 | DOI | DOI | MR | Zbl
[18] M. I. Vishik, S. Zelik, “Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit”, submitted
[19] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, v. I, II, Graylock Press, Albany, NY, 1957, 1961 | MR | MR | MR | Zbl | Zbl
[20] E. Zeidler, Nonlinear functional analysis and its applications. I. Fixed-point theorems, Springer-Verlag, New York, 1986 | MR | Zbl
[21] S. Agmon, L. Nirenberg, “Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space”, Comm. Pure Appl. Math., 20 (1967), 207–229 | DOI | MR | Zbl
[22] M. Efendiev, A. Miranville, S. Zelik, “Infinite dimensional exponential attractors for a non-autonomous reaction-diffusion system”, Math. Nachr., 248–249 (2003), 72–96 | DOI | MR | Zbl