On Isaacs' problem
Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1839-1848 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G$ be a $\pi$-soluble irreducible complex linear group of degree $n$ such that a Hall $\pi$-subgroup $H$ of it has odd order, is a $\mathrm{TI}$-subgroup, and is not normal in $G$. In this paper it is established that $n$ is divisible by $|H|$ or by a power $f>1$ of some prime number such that $f\equiv \pm 1\ (\operatorname{mod}|H|)$. Bibliography: 15 titles.
Keywords: groups, character degrees, normal subgroups.
@article{SM_2013_204_12_a7,
     author = {A. A. Yadchenko},
     title = {On {Isaacs'} problem},
     journal = {Sbornik. Mathematics},
     pages = {1839--1848},
     year = {2013},
     volume = {204},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_12_a7/}
}
TY  - JOUR
AU  - A. A. Yadchenko
TI  - On Isaacs' problem
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1839
EP  - 1848
VL  - 204
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_12_a7/
LA  - en
ID  - SM_2013_204_12_a7
ER  - 
%0 Journal Article
%A A. A. Yadchenko
%T On Isaacs' problem
%J Sbornik. Mathematics
%D 2013
%P 1839-1848
%V 204
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2013_204_12_a7/
%G en
%F SM_2013_204_12_a7
A. A. Yadchenko. On Isaacs' problem. Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1839-1848. http://geodesic.mathdoc.fr/item/SM_2013_204_12_a7/

[1] T. Okuyama, “On finite groups whose Sylow p-subgroup is a T. I. set”, Hokkaido Math. J., 4:2 (1975), 303–305 | MR | Zbl

[2] A. A. Yadchenko, “O konechnykh $\pi$-razreshimykh lineinykh gruppakh”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1986, 181–207 | MR | Zbl

[3] A. A. Yadchenko, “O $\pi$-razreshimykh neprivodimykh lineinykh gruppakh s khollovoi $TI$-podgruppoi nechetnogo poryadka. I”, Tr. In-ta matem. Minsk, 16:2 (2008), 118–130 | Zbl

[4] A. A. Yadchenko, “O $\pi$-razreshimykh neprivodimykh lineinykh gruppakh s khollovoi $TI$-podgruppoi nechetnogo poryadka. II”, Tr. In-ta matem. Minsk, 17:2 (2009), 94–104

[5] A. A. Yadchenko, “O $\pi$-razreshimykh neprivodimykh lineinykh gruppakh s khollovoi $TI$-podgruppoi nechetnogo poryadka. III”, Tr. In-ta matem. Minsk, 18:2 (2010), 99–114 | Zbl

[6] A. A. Yadchenko, “On irreducible linear groups of nonprimary degree”, ISRN Algebra, 2011, ID 868096 | DOI | MR | Zbl

[7] A. A. Yadchenko, “Solvable irreducible linear groups of arbitrary degree with a Hall $\mathrm{TI}$-subgroup”, Math. Notes, 48:2 (1990), 805–809 | DOI | MR | Zbl

[8] I. M. Isaacs, “Characters of solvable groups”, Finite groups, The Santa Cruz conference on finite groups (Santa Cruz, CA, USA, 1979), Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, RI, 1980, 377–384 | MR | Zbl

[9] D. L. Winter, “On finite solvable linear groups”, Illinois J. Math., 15:3 (1971), 425–428 | MR | Zbl

[10] A. A. Yadchenko, A. V. Romanovskii, “On the Isaacs problem concerning finite $p$-solvable linear groups”, Math. Notes, 69:1 (2001), 126–133 | DOI | DOI | MR | Zbl

[11] B. Newton, “On the degrees of complex $p$-solvable linear groups”, J. Algebra, 288:2 (2005), 384–391 | DOI | MR | Zbl

[12] D. Gorenstein, Finite groups, Harper and Row, New York, 1968 | MR | Zbl

[13] I. M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976 | MR | Zbl

[14] G. Glauberman, “Correspondences of characters for relatively prime operator groups”, Canad. J. Math., 20 (1968), 1465–1488 | DOI | MR | Zbl

[15] S. A. Chunikhin, Subgroups of finite groups, Wolters-Noordhoff Publ., Groningen, 1969 | MR | MR | Zbl | Zbl