On Isaacs' problem
Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1839-1848

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a $\pi$-soluble irreducible complex linear group of degree $n$ such that a Hall $\pi$-subgroup $H$ of it has odd order, is a $\mathrm{TI}$-subgroup, and is not normal in $G$. In this paper it is established that $n$ is divisible by $|H|$ or by a power $f>1$ of some prime number such that $f\equiv \pm 1\ (\operatorname{mod}|H|)$. Bibliography: 15 titles.
Keywords: groups, character degrees, normal subgroups.
@article{SM_2013_204_12_a7,
     author = {A. A. Yadchenko},
     title = {On {Isaacs'} problem},
     journal = {Sbornik. Mathematics},
     pages = {1839--1848},
     publisher = {mathdoc},
     volume = {204},
     number = {12},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_12_a7/}
}
TY  - JOUR
AU  - A. A. Yadchenko
TI  - On Isaacs' problem
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1839
EP  - 1848
VL  - 204
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_12_a7/
LA  - en
ID  - SM_2013_204_12_a7
ER  - 
%0 Journal Article
%A A. A. Yadchenko
%T On Isaacs' problem
%J Sbornik. Mathematics
%D 2013
%P 1839-1848
%V 204
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_12_a7/
%G en
%F SM_2013_204_12_a7
A. A. Yadchenko. On Isaacs' problem. Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1839-1848. http://geodesic.mathdoc.fr/item/SM_2013_204_12_a7/