On Isaacs' problem
Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1839-1848
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a $\pi$-soluble irreducible complex linear group of degree $n$ such that a Hall $\pi$-subgroup $H$ of it has odd order, is a $\mathrm{TI}$-subgroup, and is not normal in $G$. In this paper it is established that $n$ is divisible by $|H|$ or by a power $f>1$ of some prime number such that $f\equiv \pm 1\ (\operatorname{mod}|H|)$.
Bibliography: 15 titles.
Keywords:
groups, character degrees, normal subgroups.
@article{SM_2013_204_12_a7,
author = {A. A. Yadchenko},
title = {On {Isaacs'} problem},
journal = {Sbornik. Mathematics},
pages = {1839--1848},
publisher = {mathdoc},
volume = {204},
number = {12},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_12_a7/}
}
A. A. Yadchenko. On Isaacs' problem. Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1839-1848. http://geodesic.mathdoc.fr/item/SM_2013_204_12_a7/