The exact order of approximation to periodic functions by Bernstein-Stechkin polynomials
Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1819-1838 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper concerns the approximation properties of the Bernstein-Stechkin summability method for trigonometric Fourier series. The Jackson-Stechkin theorem is refined. Moreover, for any continuous periodic function not only is the exact upper estimate for approximation found, a lower estimate of the same order is also put forward. To do this special moduli of smoothness and the $K$-functional are introduced. Bibliography: 16 titles.
Keywords: $B$-spline, modulus of smoothness, $K$-functional, Fourier transform of a measure
Mots-clés : Fourier multiplier.
@article{SM_2013_204_12_a6,
     author = {R. M. Trigub},
     title = {The exact order of approximation to periodic functions by {Bernstein-Stechkin} polynomials},
     journal = {Sbornik. Mathematics},
     pages = {1819--1838},
     year = {2013},
     volume = {204},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_12_a6/}
}
TY  - JOUR
AU  - R. M. Trigub
TI  - The exact order of approximation to periodic functions by Bernstein-Stechkin polynomials
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1819
EP  - 1838
VL  - 204
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_12_a6/
LA  - en
ID  - SM_2013_204_12_a6
ER  - 
%0 Journal Article
%A R. M. Trigub
%T The exact order of approximation to periodic functions by Bernstein-Stechkin polynomials
%J Sbornik. Mathematics
%D 2013
%P 1819-1838
%V 204
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2013_204_12_a6/
%G en
%F SM_2013_204_12_a6
R. M. Trigub. The exact order of approximation to periodic functions by Bernstein-Stechkin polynomials. Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1819-1838. http://geodesic.mathdoc.fr/item/SM_2013_204_12_a6/

[1] A. F. Timan, Theory of approximation of functions of a real variable, Macmillan, New York, 1963 | MR | MR | Zbl

[2] R. M. Trigub, “Exact order of approximation of periodic functions by linear polynomial operators”, East J. Approx., 15:1 (2009), 25–50 | MR | Zbl

[3] R. M. Trigub, “Linear summation methods and the absolute convergence of Fourier series”, Math. USSR-Izv., 2:1 (1968), 21–46 | DOI | MR | Zbl

[4] B. R. Draganov, “Exact estimates of the rate of approximation of convolution operators”, J. Approx. Theory, 162:5 (2010), 952–979 | DOI | MR | Zbl

[5] S. B. Stechkin, “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 15:3 (1951), 219–242 | MR | Zbl

[6] S. N. Bernshtein, “O svoistvakh odnorodnykh funktsionalnykh klassov”, Dokl. AN SSSR, 57 (1947), 111–114 ; Собрание сочинений, т. II, Изд-во АН СССР, М., 1954 | MR | Zbl | MR | Zbl

[7] R. M. Trigub, “Absolute convergence of Fourier integrals, summability of Fourier series, and polynomial approximation of functions on the torus”, Math. USSR-Izv., 17:3 (1981), 567–593 | DOI | MR | Zbl | Zbl

[8] R. M. Trigub, E. S. Belinsky, Fourier analysis and approximation of functions, Kluwer Acad. Publ., Dordrecht, 2004 | MR | Zbl

[9] V. I. Ivanov, “Direct and inverse theorems in approximation theory for periodic functions in S. B. Stechkin's papers and the development of these theorems”, Proc. Inst. Math. Mech., 273:1 (2011), 1–13 | DOI | Zbl

[10] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl

[11] Yu. S. Kolomoitsev, R. M. Trigub, “On the nonclassical approximation method for periodic functions by trigonometric polynomials”, J. Math. Sci. (N. Y.), 188:2 (2013), 113–127 | DOI | Zbl

[12] O. V. Kotova, R. M. Trigub, “Exact order of approximation of periodic functions by one nonclassical method of summation of Fourier series”, J. Math. Sci. (N. Y.), 64:7 (2012), 1090–1108 | DOI | MR | Zbl

[13] V. A. Ditkin, A. P. Prudnikov, Integral transforms and operational calculus, Pergamon Press, Oxford–Edinburgh–New York–Paris–Frankfurt, 1965 | MR | MR | Zbl | Zbl

[14] R. E. Edwards, Fourier series. A modern introduction, v. 2, Grad. Texts in Math., 85, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | MR | Zbl | Zbl

[15] E. Liflyand, S. Samko, R. Trigub, “The Wiener algebra of absolutely convergent Fourier integrals: an overview”, Anal. Math. Phys., 2:1 (2012), 1–68 | DOI | MR | Zbl

[16] R. M. Trigub, “Tochnyi poryadok priblizheniya periodicheskikh funktsii polinomami Bernshteina–Stechkina”, Dopov. NAN Ukr., 7 (2013), 26–29