The exact order of approximation to periodic functions by Bernstein-Stechkin polynomials
Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1819-1838

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper concerns the approximation properties of the Bernstein-Stechkin summability method for trigonometric Fourier series. The Jackson-Stechkin theorem is refined. Moreover, for any continuous periodic function not only is the exact upper estimate for approximation found, a lower estimate of the same order is also put forward. To do this special moduli of smoothness and the $K$-functional are introduced. Bibliography: 16 titles.
Keywords: $B$-spline, modulus of smoothness, $K$-functional, Fourier transform of a measure
Mots-clés : Fourier multiplier.
@article{SM_2013_204_12_a6,
     author = {R. M. Trigub},
     title = {The exact order of approximation to periodic functions by {Bernstein-Stechkin} polynomials},
     journal = {Sbornik. Mathematics},
     pages = {1819--1838},
     publisher = {mathdoc},
     volume = {204},
     number = {12},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_12_a6/}
}
TY  - JOUR
AU  - R. M. Trigub
TI  - The exact order of approximation to periodic functions by Bernstein-Stechkin polynomials
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1819
EP  - 1838
VL  - 204
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_12_a6/
LA  - en
ID  - SM_2013_204_12_a6
ER  - 
%0 Journal Article
%A R. M. Trigub
%T The exact order of approximation to periodic functions by Bernstein-Stechkin polynomials
%J Sbornik. Mathematics
%D 2013
%P 1819-1838
%V 204
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_12_a6/
%G en
%F SM_2013_204_12_a6
R. M. Trigub. The exact order of approximation to periodic functions by Bernstein-Stechkin polynomials. Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1819-1838. http://geodesic.mathdoc.fr/item/SM_2013_204_12_a6/