The exact order of approximation to periodic functions by Bernstein-Stechkin polynomials
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1819-1838
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper concerns the approximation properties of the Bernstein-Stechkin summability method for trigonometric Fourier series. The Jackson-Stechkin theorem is refined. Moreover, for any continuous periodic function not only is the exact upper estimate for approximation found, a lower estimate of the same order is also put forward. To do this special moduli of smoothness and the $K$-functional are introduced.
Bibliography: 16 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
$B$-spline, modulus of smoothness, $K$-functional, Fourier transform of a measure
Mots-clés : Fourier multiplier.
                    
                  
                
                
                Mots-clés : Fourier multiplier.
@article{SM_2013_204_12_a6,
     author = {R. M. Trigub},
     title = {The exact order of approximation to periodic functions by {Bernstein-Stechkin} polynomials},
     journal = {Sbornik. Mathematics},
     pages = {1819--1838},
     publisher = {mathdoc},
     volume = {204},
     number = {12},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_12_a6/}
}
                      
                      
                    R. M. Trigub. The exact order of approximation to periodic functions by Bernstein-Stechkin polynomials. Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1819-1838. http://geodesic.mathdoc.fr/item/SM_2013_204_12_a6/
