Systems of elements preserving measure on varieties of groups
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1811-1818
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that for any $l$, $1\leqslant l\leqslant r$, a system of elements $ \{v_1,\dots,v_l\}$ of a free metabelian group $S$ of rank $r\geqslant2$ is primitive if and only if it preserves measure on the variety of metabelian groups $\mathfrak A^2$. From this we obtain the result that a system of elements $\{v_1,\dots,v_l\}$ is primitive in the group $S$ if and only if it is primitive in its profinite completion $\widehat{S}$. Furthermore, it is proved that there exist a variety $\mathfrak M$ and a nonprimitive element $v \in F_r(\mathfrak M)$ such that $v$ preserves measure on $\mathfrak M$.
Bibliography: 13 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
variety of groups, metabelian group, primitive system of elements, measure-preserving system of elements.
Mots-clés : soluble group
                    
                  
                
                
                Mots-clés : soluble group
@article{SM_2013_204_12_a5,
     author = {E. I. Timoshenko},
     title = {Systems of elements preserving measure on varieties of groups},
     journal = {Sbornik. Mathematics},
     pages = {1811--1818},
     publisher = {mathdoc},
     volume = {204},
     number = {12},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_12_a5/}
}
                      
                      
                    E. I. Timoshenko. Systems of elements preserving measure on varieties of groups. Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1811-1818. http://geodesic.mathdoc.fr/item/SM_2013_204_12_a5/
