Systems of elements preserving measure on varieties of groups
Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1811-1818

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any $l$, $1\leqslant l\leqslant r$, a system of elements $ \{v_1,\dots,v_l\}$ of a free metabelian group $S$ of rank $r\geqslant2$ is primitive if and only if it preserves measure on the variety of metabelian groups $\mathfrak A^2$. From this we obtain the result that a system of elements $\{v_1,\dots,v_l\}$ is primitive in the group $S$ if and only if it is primitive in its profinite completion $\widehat{S}$. Furthermore, it is proved that there exist a variety $\mathfrak M$ and a nonprimitive element $v \in F_r(\mathfrak M)$ such that $v$ preserves measure on $\mathfrak M$. Bibliography: 13 titles.
Keywords: variety of groups, metabelian group, primitive system of elements, measure-preserving system of elements.
Mots-clés : soluble group
@article{SM_2013_204_12_a5,
     author = {E. I. Timoshenko},
     title = {Systems of elements preserving measure on varieties of groups},
     journal = {Sbornik. Mathematics},
     pages = {1811--1818},
     publisher = {mathdoc},
     volume = {204},
     number = {12},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_12_a5/}
}
TY  - JOUR
AU  - E. I. Timoshenko
TI  - Systems of elements preserving measure on varieties of groups
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1811
EP  - 1818
VL  - 204
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_12_a5/
LA  - en
ID  - SM_2013_204_12_a5
ER  - 
%0 Journal Article
%A E. I. Timoshenko
%T Systems of elements preserving measure on varieties of groups
%J Sbornik. Mathematics
%D 2013
%P 1811-1818
%V 204
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_12_a5/
%G en
%F SM_2013_204_12_a5
E. I. Timoshenko. Systems of elements preserving measure on varieties of groups. Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1811-1818. http://geodesic.mathdoc.fr/item/SM_2013_204_12_a5/