Mots-clés : soluble group
@article{SM_2013_204_12_a5,
author = {E. I. Timoshenko},
title = {Systems of elements preserving measure on varieties of groups},
journal = {Sbornik. Mathematics},
pages = {1811--1818},
year = {2013},
volume = {204},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_12_a5/}
}
E. I. Timoshenko. Systems of elements preserving measure on varieties of groups. Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1811-1818. http://geodesic.mathdoc.fr/item/SM_2013_204_12_a5/
[1] E. I. Timoshenko, “Primitive and measure-preserving systems of elements on the varieties of metabelian and metabelian profinite groups”, Siberian Math. J., 54:1 (2013), 152–158 | DOI | MR | Zbl
[2] D. Puder, Primitive words, free factors and mesure preservation, arXiv: abs/1104.3991
[3] D. Puder, O. Pazanchevski, Measure preserving words are primitive, arXiv: 1202.3269
[4] C. K. Gupta, E. I. Timoshenko, “Primitive systems of elements in the varieties $\mathfrak A_m \mathfrak A_n$: a criterion and induction”, Algebra and Logic, 38:5 (1999), 277–288 | DOI | MR | Zbl
[5] E. I. Timoshenko, Endomorfizmy i universalnye teorii razreshimykh grupp, Novosibirskii gos. tekh. un-t, Novosibirsk, 2011
[6] C. K. Gupta, V .A. Roman'kov, “Finite separability of tameness and primitivity in certain relatively free groups”, Comm. Algebra, 23:11 (1995), 4101–4108 | DOI | MR | Zbl
[7] J. Wilson, Profinite groups, London Math. Soc. Monogr. (N.S.), 19, Clarendon Press, New York, 1998 | MR | Zbl
[8] O. V. Melnikov, V. N. Remeslennikov, V. A. Romankov, L. A. Skornyakov, I. P. Shestakov, Obschaya algebra, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1990 | MR | Zbl
[9] U. U. Umirbaev, “Primitive elements of free groups”, Russian Math. Surveys, 49:2 (1994), 184–185 | DOI | MR | Zbl
[10] E. I. Timoshenko, “Algorithmic solvability of the problem of inclusion in a basis of a free metabelian group”, Math. Notes, 51:3 (1992), 304–307 | DOI | MR | Zbl
[11] V. A. Roman'kov, “Criteria for the primitivity of a system of elements of a free metabelian group”, Ukrainian Math. J., 43:7–8 (1991), 930–935 | DOI | MR | Zbl | Zbl
[12] C. K. Gupta, E. I. Timoshenko, “Primitivity in the free groups of the variety $\mathfrak A_m \mathfrak A_n$”, Comm. Algebra, 24:9 (1996), 2859–2876 | DOI | MR | Zbl
[13] E. I. Timoshenko, “Primitive systems of elements in the variety $\mathfrak A \mathfrak N_2$ and some locally finite varieties of groups”, Algebra and Logic, 37:6 (1998), 391–398 | DOI | MR | Zbl