Systems of elements preserving measure on varieties of groups
Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1811-1818 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that for any $l$, $1\leqslant l\leqslant r$, a system of elements $ \{v_1,\dots,v_l\}$ of a free metabelian group $S$ of rank $r\geqslant2$ is primitive if and only if it preserves measure on the variety of metabelian groups $\mathfrak A^2$. From this we obtain the result that a system of elements $\{v_1,\dots,v_l\}$ is primitive in the group $S$ if and only if it is primitive in its profinite completion $\widehat{S}$. Furthermore, it is proved that there exist a variety $\mathfrak M$ and a nonprimitive element $v \in F_r(\mathfrak M)$ such that $v$ preserves measure on $\mathfrak M$. Bibliography: 13 titles.
Keywords: variety of groups, metabelian group, primitive system of elements, measure-preserving system of elements.
Mots-clés : soluble group
@article{SM_2013_204_12_a5,
     author = {E. I. Timoshenko},
     title = {Systems of elements preserving measure on varieties of groups},
     journal = {Sbornik. Mathematics},
     pages = {1811--1818},
     year = {2013},
     volume = {204},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_12_a5/}
}
TY  - JOUR
AU  - E. I. Timoshenko
TI  - Systems of elements preserving measure on varieties of groups
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1811
EP  - 1818
VL  - 204
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_12_a5/
LA  - en
ID  - SM_2013_204_12_a5
ER  - 
%0 Journal Article
%A E. I. Timoshenko
%T Systems of elements preserving measure on varieties of groups
%J Sbornik. Mathematics
%D 2013
%P 1811-1818
%V 204
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2013_204_12_a5/
%G en
%F SM_2013_204_12_a5
E. I. Timoshenko. Systems of elements preserving measure on varieties of groups. Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1811-1818. http://geodesic.mathdoc.fr/item/SM_2013_204_12_a5/

[1] E. I. Timoshenko, “Primitive and measure-preserving systems of elements on the varieties of metabelian and metabelian profinite groups”, Siberian Math. J., 54:1 (2013), 152–158 | DOI | MR | Zbl

[2] D. Puder, Primitive words, free factors and mesure preservation, arXiv: abs/1104.3991

[3] D. Puder, O. Pazanchevski, Measure preserving words are primitive, arXiv: 1202.3269

[4] C. K. Gupta, E. I. Timoshenko, “Primitive systems of elements in the varieties $\mathfrak A_m \mathfrak A_n$: a criterion and induction”, Algebra and Logic, 38:5 (1999), 277–288 | DOI | MR | Zbl

[5] E. I. Timoshenko, Endomorfizmy i universalnye teorii razreshimykh grupp, Novosibirskii gos. tekh. un-t, Novosibirsk, 2011

[6] C. K. Gupta, V .A. Roman'kov, “Finite separability of tameness and primitivity in certain relatively free groups”, Comm. Algebra, 23:11 (1995), 4101–4108 | DOI | MR | Zbl

[7] J. Wilson, Profinite groups, London Math. Soc. Monogr. (N.S.), 19, Clarendon Press, New York, 1998 | MR | Zbl

[8] O. V. Melnikov, V. N. Remeslennikov, V. A. Romankov, L. A. Skornyakov, I. P. Shestakov, Obschaya algebra, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1990 | MR | Zbl

[9] U. U. Umirbaev, “Primitive elements of free groups”, Russian Math. Surveys, 49:2 (1994), 184–185 | DOI | MR | Zbl

[10] E. I. Timoshenko, “Algorithmic solvability of the problem of inclusion in a basis of a free metabelian group”, Math. Notes, 51:3 (1992), 304–307 | DOI | MR | Zbl

[11] V. A. Roman'kov, “Criteria for the primitivity of a system of elements of a free metabelian group”, Ukrainian Math. J., 43:7–8 (1991), 930–935 | DOI | MR | Zbl | Zbl

[12] C. K. Gupta, E. I. Timoshenko, “Primitivity in the free groups of the variety $\mathfrak A_m \mathfrak A_n$”, Comm. Algebra, 24:9 (1996), 2859–2876 | DOI | MR | Zbl

[13] E. I. Timoshenko, “Primitive systems of elements in the variety $\mathfrak A \mathfrak N_2$ and some locally finite varieties of groups”, Algebra and Logic, 37:6 (1998), 391–398 | DOI | MR | Zbl