Mots-clés : two-dimensional adèles, Picard groupoids
@article{SM_2013_204_12_a4,
author = {D. V. Osipov},
title = {Noncommutative reciprocity laws on algebraic surfaces: the case of tame ramification},
journal = {Sbornik. Mathematics},
pages = {1797--1810},
year = {2013},
volume = {204},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_12_a4/}
}
D. V. Osipov. Noncommutative reciprocity laws on algebraic surfaces: the case of tame ramification. Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1797-1810. http://geodesic.mathdoc.fr/item/SM_2013_204_12_a4/
[1] D. Osipov, X. Zhu, “A categorical proof of the Parshin reciprocity laws on algebraic surfaces”, Algebra Number Theory, 5:3 (2011), 289–337 | DOI | MR | Zbl
[2] A. N. Parshin, “Local class field theory”, Proc. Steklov Inst. Math., 165 (1985), 157–185 | MR | Zbl
[3] D. V. Osipov, “The unramified two-dimensional Langlands correspondence”, Izv. Math., 77:4 (2013), 714–741 | DOI | DOI | Zbl
[4] M. M. Kapranov, “Analogies between the Langlands correspondence and topological quantum field theory”, Functional analysis on the eve of the 21st century, New Brunswick, NJ, 1993, v. 1, Progr. Math., 131, Birkhäuser, Boston, MA, 1995, 119–151 | MR | Zbl
[5] L. Breen, “Monoidal categores and multiextensions”, Compositio Math., 117:3 (1999), 295–335 | DOI | MR | Zbl
[6] L. Breen, “Bitorseurs et cohomologie non abélienne”, The Grothendieck Festschrift, v. I, Progr. Math., 86, Birkhäuser, Boston, MA, 1990, 401–476 | MR | Zbl
[7] D. V. Osipov, “$n$-dimensional local fields and adeles on $n$-dimensional schemes”, Surveys in contemporary mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008, 131–164 | MR | Zbl
[8] D. Osipov, “Adeles on $n$-dimensional schemes and categories $C_n$”, Internat. J. Math., 18:3 (2007), 269–279 | DOI | MR | Zbl
[9] J.-L. Brylinski, D. A. McLaughlin, “Non-commutative reciprocity laws associated to finite groups”, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), Contemp. Math., 202, Amer. Math. Soc., Providence, RI, 1997, 421–438 | DOI | MR | Zbl