Mots-clés : interpolation
@article{SM_2013_204_12_a3,
author = {A. S. Krivosheev and O. A. Krivosheeva},
title = {A basis in an invariant subspace of analytic functions},
journal = {Sbornik. Mathematics},
pages = {1745--1796},
year = {2013},
volume = {204},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_12_a3/}
}
A. S. Krivosheev; O. A. Krivosheeva. A basis in an invariant subspace of analytic functions. Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1745-1796. http://geodesic.mathdoc.fr/item/SM_2013_204_12_a3/
[1] V. V. Napalkov, Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR
[2] I. F. Krasichkov-Ternovskij, “A homogeneous equation of convolution type on convex domains”, Soviet Math. Dokl., 12 (1971), 396–398 | MR | Zbl
[3] A. A. Gol'dberg, B. Ya. Levin, I. V. Ostrovkij, “Entire and meromorphic functions”, Complex Analysis I, Encyclopaedia Math. Sci., 85, Springer-Verlag, Berlin, 1997, 1–193 | MR | MR | Zbl | Zbl
[4] A. S. Krivosheev, “The fundamental principle for invariant subspaces in convex domains”, Izv. Math., 68:2 (2004), 291–353 | DOI | DOI | MR | Zbl
[5] O. A. Krivosheeva, A. S. Krivosheev, “Fundamentalnyi printsip dlya invariantnykh podprostranstv”, Ufimsk. matem. zhurn., 2:4 (2010), 58–73
[6] A. F. Leontev, Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR | Zbl
[7] D. G. Dickson, “Infinite order differential equations”, Proc. Amer. Math. Soc., 15:4 (1964), 638–641 | DOI | MR | Zbl
[8] A. F. Leontev, “O predstavlenii funktsii posledovatelnostyami polinomov Dirikhle”, Matem. sb., 70(112):1 (1966), 132–144 | MR | Zbl
[9] R. Meise, “Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals”, J. Reine Angew. Math., 363 (1985), 59–95 | DOI | MR | Zbl
[10] V. V. Napalkov, “A basis in the space of solutions of a convolution equation”, Math. Notes, 43:1 (1988), 27–33 | DOI | MR | Zbl | Zbl
[11] A. S. Krivosheev, “The Schauder basis in the solution space of a homogeneous convolution equation”, Math. Notes, 57:1 (1995), 41–50 | DOI | MR | Zbl
[12] A. S. Krivosheev, “Pochti eksponentsialnyi bazis”, Ufimsk. matem. zhurn., 2:1 (2010), 87–96
[13] A. S. Krivosheev, “Bazisy «po otnositelno malym gruppam»”, Ufimsk. matem. zhurn., 2:2 (2010), 67–89 | Zbl
[14] A. S. Krivosheev, “Pochti eksponentsialnaya posledovatelnost eksponentsialnykh mnogochlenov”, Ufimsk. matem. zhurn., 4:1 (2012), 88–106
[15] A. Grothendieck, “Sur les espaces ($F$) et ($DF$)”, Summa Brasil. Math., 3 (1954), 57–123 | MR | Zbl
[16] O. A. Krivosheyeva, “The convergence domain for series of exponential monomials”, Ufa Math. Journal, 3:2 (2011), 42–55
[17] B. Ja. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1964 | MR | MR | Zbl | Zbl
[18] I. F. Krasichkov-Ternovskii, “A geometric lemma useful in the theory of entire functions and Levinson-type theorems”, Math. Notes, 24:4 (1978), 784–792 | DOI | MR | Zbl | Zbl
[19] P. Lelong, L. Gruman, Entire functions of several complex variables, Grundlehren Math. Wiss., 282, Springer-Verlag, Berlin, 1986 | MR | MR | Zbl | Zbl
[20] O. A. Krivosheeva, “Singular points of the sum of a series of exponential monomials on the boundary of the convergence domain”, St. Petersburg Math. J., 23:2 (2012), 321–350 | DOI | MR | Zbl
[21] L. Hörmander, The analysis of linear partial differential operators, v. 1, Grundlehren Math. Wiss., 256, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl
[22] L. I. Ronkin, Introduction to the theory of entire functions of several variables, Amer. Math. Soc., Providence, RI, 1974 | MR | MR | Zbl | Zbl
[23] R. S. Yulmukhametov, “Approksimatsiya subgarmonicheskikh funktsii”, Anal. Math., 11:3 (1985), 257–282 | DOI | MR | Zbl
[24] A. S. Krivosheev, V. V. Napalkov, “Complex analysis and convolution operators”, Russian Math. Surveys, 47:6 (1992), 1–56 | DOI | MR | Zbl
[25] A. F. Leontev, Ryady eksponent, Nauka, M., 1976 | MR | Zbl