Mots-clés : Otsuki tori
@article{SM_2013_204_12_a2,
author = {M. A. Karpukhin},
title = {Nonmaximality of known extremal metrics on torus and {Klein} bottle},
journal = {Sbornik. Mathematics},
pages = {1728--1744},
year = {2013},
volume = {204},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_12_a2/}
}
M. A. Karpukhin. Nonmaximality of known extremal metrics on torus and Klein bottle. Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1728-1744. http://geodesic.mathdoc.fr/item/SM_2013_204_12_a2/
[1] A. El Soufi, H. Giacomini, M. Jazar, “A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle”, Duke Math. J., 135:1 (2006), 181–202 | DOI | MR | Zbl
[2] A. El Soufi, S. Ilias, “Riemannian manifolds admitting isometric immersions by their first eigenfunctions”, Pacific. J. Math., 195:1 (2000), 91–99 | DOI | MR | Zbl
[3] A. El Soufi, S. Ilias, “Laplacian eigenvalue functionals and metric deformations on compact manifolds”, J. Geom. Phys., 58:1 (2008), 89–104 | DOI | MR | Zbl
[4] J. Hersch, “Quatre propriétés isopérimétriques de membranes sphériques homogènes”, C. R. Acad. Sci. Paris Sér A-B, 270 (1970), A1645–A1648 | MR
[5] D. Jakobson, N. Nadirashvili, I. Polterovich, “Extremal metric for the first eigenvalue on a Klein bottle”, Canad. J. Math., 58:2 (2006), 381–400 | DOI | MR | Zbl
[6] N. Korevaar, “Upper bounds for eigenvalues of conformal metrics”, J. Differential Geom., 37:1 (1993), 73–93 | MR | Zbl
[7] P. Li, S.-T. Yau, “A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces”, Invent. Math., 69:2 (1982), 269–291 | MR | Zbl
[8] N. Nadirashvili, “Berger's isoperimetric problem and minimal immersions of surfaces”, Geom. Funct. Anal., 6:5 (1996), 877–897 | DOI | MR | Zbl
[9] N. Nadirashvili, “Isoperimetric inequality for the second eigenvalue of a sphere”, J. Differential Geom., 61:2 (2002), 335–340 | MR | Zbl
[10] P. C. Yang, S.-T. Yau, “Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7:1 (1980), 55–63 | MR | Zbl
[11] A. V. Penskoi, “Extremal spectral properties of Otsuki tori”, Math. Nachr., 286:4 (2013), 379–391 | DOI | MR | Zbl
[12] S. Bando, H. Urakawa, “Generic properties of the eigenvalue of the Laplacian for compact Riemannian manifolds”, Tôhoku Math. J. (2), 35:2 (1983), 155–172 | DOI | MR | Zbl
[13] M. Berger, “Sur les premières valeurs propres des varietes riemanniennes”, Compositio Math., 26:2 (1973), 129–149 | MR | Zbl
[14] A. V. Penskoi, “Extremal spectral properties of Lawson tau-surfaces and the Lamé equation”, Mosc. Math. J., 12:1 (2012), 173–192 | MR | Zbl
[15] H. Lapointe, “Spectral properties of bipolar minimal surfaces in $\mathbb{S}^4$”, Differential Geom. Appl., 26:1 (2008), 9–22 | DOI | MR | Zbl
[16] M. A. Karpukhin, “Spectral properties of bipolar surfaces to Otsuki tori”, J. Spectr. Theory (to appear)
[17] P. F. Byrd, M. D. Friedman, Handbook of elliptic integrals for engineers and scientists, Springer-Verlag, New York–Heidelberg, 1971 | MR | Zbl
[18] B. Colbois, A. El Soufi, “Extremal eigenvalues of the Laplacian in a conformal class of metrics: the «Conformal Spectrum»”, Ann. Global Anal. Geom., 24:4 (2003), 337–349 | DOI | MR | Zbl
[19] I. Chavel, E. A. Feldman, “Spectra of manifolds with small handles”, Comment. Math. Helv., 56:1 (1981), 83–102 | DOI | MR | Zbl
[20] D. Montgomery, H. Samelson, C. T. Yang, “Exceptional orbits of highest dimension”, Ann. of Math. (2), 64:1 (1956), 131–141 | DOI | MR | Zbl
[21] W.-Y. Hsiang, H. B. Lawson, “Minimal submanifolds of low cohomogeneity”, J. Differential Geometry, 5:1 (1971), 1–38 | MR | Zbl
[22] T. Otsuki, “Minimal hypersurfaces in a Riemannian manifold of constant curvature”, Amer. J. Math., 92:1 (1970), 145–173 | DOI | MR | Zbl
[23] Z. Hu, H. Song, “On Otsuki tori and their Willmore energy”, J. Math. Anal. Appl., 395:2 (2012), 465–472 | DOI | MR | Zbl
[24] H. B. Lawson, “Complete minimal surfaces in $\mathbb{S}^3$”, Ann. of Math. (2), 92:3 (1970), 335–374 | DOI | MR | Zbl