Nonmaximality of known extremal metrics on torus and Klein bottle
Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1728-1744 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The El Soufi-Ilias theorem establishes a connection between minimal submanifolds of spheres and extremal metrics for eigenvalues of the Laplace-Beltrami operator. Recently, this connection was used to provide several explicit examples of extremal metrics. We investigate the properties of these metrics and prove that none of them is maximal. Bibliography: 24 titles.
Keywords: extremal metrics, bipolar surface, Lawson tau-surfaces.
Mots-clés : Otsuki tori
@article{SM_2013_204_12_a2,
     author = {M. A. Karpukhin},
     title = {Nonmaximality of known extremal metrics on torus and {Klein} bottle},
     journal = {Sbornik. Mathematics},
     pages = {1728--1744},
     year = {2013},
     volume = {204},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_12_a2/}
}
TY  - JOUR
AU  - M. A. Karpukhin
TI  - Nonmaximality of known extremal metrics on torus and Klein bottle
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1728
EP  - 1744
VL  - 204
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_12_a2/
LA  - en
ID  - SM_2013_204_12_a2
ER  - 
%0 Journal Article
%A M. A. Karpukhin
%T Nonmaximality of known extremal metrics on torus and Klein bottle
%J Sbornik. Mathematics
%D 2013
%P 1728-1744
%V 204
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2013_204_12_a2/
%G en
%F SM_2013_204_12_a2
M. A. Karpukhin. Nonmaximality of known extremal metrics on torus and Klein bottle. Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1728-1744. http://geodesic.mathdoc.fr/item/SM_2013_204_12_a2/

[1] A. El Soufi, H. Giacomini, M. Jazar, “A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle”, Duke Math. J., 135:1 (2006), 181–202 | DOI | MR | Zbl

[2] A. El Soufi, S. Ilias, “Riemannian manifolds admitting isometric immersions by their first eigenfunctions”, Pacific. J. Math., 195:1 (2000), 91–99 | DOI | MR | Zbl

[3] A. El Soufi, S. Ilias, “Laplacian eigenvalue functionals and metric deformations on compact manifolds”, J. Geom. Phys., 58:1 (2008), 89–104 | DOI | MR | Zbl

[4] J. Hersch, “Quatre propriétés isopérimétriques de membranes sphériques homogènes”, C. R. Acad. Sci. Paris Sér A-B, 270 (1970), A1645–A1648 | MR

[5] D. Jakobson, N. Nadirashvili, I. Polterovich, “Extremal metric for the first eigenvalue on a Klein bottle”, Canad. J. Math., 58:2 (2006), 381–400 | DOI | MR | Zbl

[6] N. Korevaar, “Upper bounds for eigenvalues of conformal metrics”, J. Differential Geom., 37:1 (1993), 73–93 | MR | Zbl

[7] P. Li, S.-T. Yau, “A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces”, Invent. Math., 69:2 (1982), 269–291 | MR | Zbl

[8] N. Nadirashvili, “Berger's isoperimetric problem and minimal immersions of surfaces”, Geom. Funct. Anal., 6:5 (1996), 877–897 | DOI | MR | Zbl

[9] N. Nadirashvili, “Isoperimetric inequality for the second eigenvalue of a sphere”, J. Differential Geom., 61:2 (2002), 335–340 | MR | Zbl

[10] P. C. Yang, S.-T. Yau, “Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7:1 (1980), 55–63 | MR | Zbl

[11] A. V. Penskoi, “Extremal spectral properties of Otsuki tori”, Math. Nachr., 286:4 (2013), 379–391 | DOI | MR | Zbl

[12] S. Bando, H. Urakawa, “Generic properties of the eigenvalue of the Laplacian for compact Riemannian manifolds”, Tôhoku Math. J. (2), 35:2 (1983), 155–172 | DOI | MR | Zbl

[13] M. Berger, “Sur les premières valeurs propres des varietes riemanniennes”, Compositio Math., 26:2 (1973), 129–149 | MR | Zbl

[14] A. V. Penskoi, “Extremal spectral properties of Lawson tau-surfaces and the Lamé equation”, Mosc. Math. J., 12:1 (2012), 173–192 | MR | Zbl

[15] H. Lapointe, “Spectral properties of bipolar minimal surfaces in $\mathbb{S}^4$”, Differential Geom. Appl., 26:1 (2008), 9–22 | DOI | MR | Zbl

[16] M. A. Karpukhin, “Spectral properties of bipolar surfaces to Otsuki tori”, J. Spectr. Theory (to appear)

[17] P. F. Byrd, M. D. Friedman, Handbook of elliptic integrals for engineers and scientists, Springer-Verlag, New York–Heidelberg, 1971 | MR | Zbl

[18] B. Colbois, A. El Soufi, “Extremal eigenvalues of the Laplacian in a conformal class of metrics: the «Conformal Spectrum»”, Ann. Global Anal. Geom., 24:4 (2003), 337–349 | DOI | MR | Zbl

[19] I. Chavel, E. A. Feldman, “Spectra of manifolds with small handles”, Comment. Math. Helv., 56:1 (1981), 83–102 | DOI | MR | Zbl

[20] D. Montgomery, H. Samelson, C. T. Yang, “Exceptional orbits of highest dimension”, Ann. of Math. (2), 64:1 (1956), 131–141 | DOI | MR | Zbl

[21] W.-Y. Hsiang, H. B. Lawson, “Minimal submanifolds of low cohomogeneity”, J. Differential Geometry, 5:1 (1971), 1–38 | MR | Zbl

[22] T. Otsuki, “Minimal hypersurfaces in a Riemannian manifold of constant curvature”, Amer. J. Math., 92:1 (1970), 145–173 | DOI | MR | Zbl

[23] Z. Hu, H. Song, “On Otsuki tori and their Willmore energy”, J. Math. Anal. Appl., 395:2 (2012), 465–472 | DOI | MR | Zbl

[24] H. B. Lawson, “Complete minimal surfaces in $\mathbb{S}^3$”, Ann. of Math. (2), 92:3 (1970), 335–374 | DOI | MR | Zbl