Invariant distributions on compact homogeneous spaces
Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1712-1727 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study distributions on compact homogeneous spaces, including invariant distributions and also distributions admitting a sub-Riemannian structure. We first consider distributions of dimension 1 and 2 on compact homogeneous spaces. After this, we study the cases of compact homogeneous spaces of dimension 2, 3, and 4 in detail. Invariant distributions on simply connected compact homogeneous spaces are also treated. Bibliography: 18 titles.
Keywords: homogeneous space, sub-Riemannian structure, holonomicity.
Mots-clés : distribution
@article{SM_2013_204_12_a1,
     author = {V. V. Gorbatsevich},
     title = {Invariant distributions on compact homogeneous spaces},
     journal = {Sbornik. Mathematics},
     pages = {1712--1727},
     year = {2013},
     volume = {204},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_12_a1/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Invariant distributions on compact homogeneous spaces
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1712
EP  - 1727
VL  - 204
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_12_a1/
LA  - en
ID  - SM_2013_204_12_a1
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Invariant distributions on compact homogeneous spaces
%J Sbornik. Mathematics
%D 2013
%P 1712-1727
%V 204
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2013_204_12_a1/
%G en
%F SM_2013_204_12_a1
V. V. Gorbatsevich. Invariant distributions on compact homogeneous spaces. Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1712-1727. http://geodesic.mathdoc.fr/item/SM_2013_204_12_a1/

[1] P. K. Rashevskii, “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uchen. zap. Mosk. gosud. ped. in-ta im. K. Libknekhta. Ser. fiz-mat., 3 (1938), 83–94

[2] W. L. Chow, “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung”, Math. Ann., 117:1 (1940–1941), 98–105 | DOI | MR | Zbl

[3] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005 | Zbl

[4] V. V. Gorbatsevich, A. L. Onishchik, “Lie transformation groups”, Lie groups and Lie algebras I, Encyclopaedia Math. Sci., 20, Springer-Verlag, Berlin, 1993, 95–229 | MR | MR | Zbl | Zbl

[5] J. A. Wolf, Spaces of constant curvature, Univ. of California, Berkeley, CA, 1972 | MR | MR | Zbl | Zbl

[6] V. V. Gorbatsevich, “Invariant intrinsic Finsler metrics on homogeneous spaces and strong subalgebras of Lie algebras”, Siberian Math. J., 49:1 (2008), 36–47 | DOI | MR | Zbl

[7] V. V. Gorbatsevich, “On some cohomology invariants of compact homogeneous manifolds”, Lie groups, their discrete subgroups, and invariant theory, Adv. Soviet Math., 8, Amer. Math. Soc., Providence, RI, 1992, 69–85 | MR | Zbl

[8] A. L. Onishchik, Topology of transitive transformation groups, Barth, Leipzig, 1994 | MR | MR | Zbl | Zbl

[9] K. H. Hofmann, “Lie algebras with subalgebras of co-dimension one”, Illinois J. Math., 9 (1965), 636–643 | MR | Zbl

[10] D. Frank, “On the index of a tangent 2-field”, Topology, 11 (1972), 245–252 | DOI | MR | Zbl

[11] B. J. Pollina, “Tangent 2-fields on even-dimensional nonorientable manifolds”, Trans. Amer. Math. Soc., 271 (1982), 215–224 | MR | Zbl

[12] N. Bourbaki, Éléments de mathématique. Groupes et algèbres de Lie. Chap. I: Algèbres de Lie. Chap. II: Algèbres de Lie libres. Chap. III: Groupes de Lie, Hermann Cie, Paris, 1971–1972 | MR | MR | Zbl

[13] V. V. Gorbatsevich, “Three-dimensional homogeneous spaces”, Siberian Math. J., 18:2 (1977), 200–210 | MR | Zbl | Zbl

[14] V. V. Gorbatsevich, “O klassifikatsii chetyrekhmernykh kompaktnykh odnorodnykh prostranstv”, UMN, 32:2(194) (1977), 207–208 | MR | Zbl

[15] E. B. Vinberg, V. V. Borbatsevich, O. V. Shvartsman, “Discrete subgroups of Lie groups”, Lie groups and Lie algebras II, Encyclopaedia Math. Sci., 21, Springer-Verlag, Berlin, 2000, 1–123 | MR | MR | Zbl | Zbl

[16] O. V. Manturov, “Odnorodnye rimanovy prostranstva s neprivodimoi gruppoi vraschenii”, Tr. sem. po vekt. i tenz. analizu, 13, 1966, 68–145 | MR | Zbl

[17] W. Dickinson, M. M. Kerr, “The geometry of compact homogeneous spaces with two isotropy summands”, Ann. Global Anal. Geom., 34:4 (2008), 329–350 | DOI | MR | Zbl

[18] E. B. Dynkin, “Maksimalnye podgruppy klassicheskikh grupp”, Tr. MMO, 1, GITTL, M.-L., 1952, 39–166 | MR | Zbl