@article{SM_2013_204_12_a0,
author = {R. Ya. Budylin and S. O. Gorchinskiy},
title = {Intersections of adelic groups on a~surface},
journal = {Sbornik. Mathematics},
pages = {1701--1711},
year = {2013},
volume = {204},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_12_a0/}
}
R. Ya. Budylin; S. O. Gorchinskiy. Intersections of adelic groups on a surface. Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1701-1711. http://geodesic.mathdoc.fr/item/SM_2013_204_12_a0/
[1] A. N. Paršin, “On the arithmetic of two-dimensional schemes. I. Distributions and residues”, Math. USSR-Izv., 10:4 (1976), 695–729 | DOI | MR | Zbl | Zbl
[2] T. Fimmel, A. N. Parshin, An introduction to the higher adelic theory
[3] D. V. Osipov, A. N. Parshin, “Harmonic analysis and the Riemann–Roch theorem”, Dokl. Math., 84:3 (2011), 826–829 | DOI | MR | Zbl
[4] D. V. Osipov, “Krichever correspondence for algebraic varieties”, Izv. Math., 65:5 (2001), 941–975 | DOI | DOI | MR | Zbl
[5] D. V. Osipov, “$n$-dimensional local fields and adeles on $n$-dimensional schemes”, Surveys in contemporary mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008, 131–164 | MR | Zbl
[6] M. Morrow, An introduction to higher dimensional local fields and adeles, arXiv: 1204.0586
[7] A. A. Beǐlinson, “Residues and adeles”, Funct. Anal. Appl., 14:1 (1980), 34–35 | DOI | MR | Zbl
[8] A. Huber, “On the Parshin–Beilinson adeles for schemes”, Abh. Math. Sem. Univ. Hamburg, 61:1 (1991), 249–273 | DOI | MR | Zbl
[9] A. Yekutieli, An explicit construction of the Grothendieck residue complex, With an appendix by Pramathanath Sastry, Astérisque, 208, Soc. Math. de France, Paris, 1992 | MR | Zbl
[10] H. Matsumura, Commutative algebra, Math. Lecture Note Ser., 56, Benjamin, Reading, MA, 1980 | MR | Zbl
[11] D. Eisenbud, Commutative algebra, With a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995 | MR | Zbl
[12] A. N. Parshin, “Chern classes, adeles and $L$-functions”, J. Reine Angew. Math., 341 (1983), 174–192 | DOI | MR | Zbl