Intersections of adelic groups on a surface
Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1701-1711 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We solve a technical problem related to adeles on an algebraic surface. Given a finite set of natural numbers, one can associate with it an adelic group. We show that this operation commutes with taking intersections if the surface is defined over an uncountable field, and we provide a counterexample otherwise. Bibliography: 12 titles.
Keywords: higher adeles, higher-dimensional local rings.
@article{SM_2013_204_12_a0,
     author = {R. Ya. Budylin and S. O. Gorchinskiy},
     title = {Intersections of adelic groups on a~surface},
     journal = {Sbornik. Mathematics},
     pages = {1701--1711},
     year = {2013},
     volume = {204},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_12_a0/}
}
TY  - JOUR
AU  - R. Ya. Budylin
AU  - S. O. Gorchinskiy
TI  - Intersections of adelic groups on a surface
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1701
EP  - 1711
VL  - 204
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_12_a0/
LA  - en
ID  - SM_2013_204_12_a0
ER  - 
%0 Journal Article
%A R. Ya. Budylin
%A S. O. Gorchinskiy
%T Intersections of adelic groups on a surface
%J Sbornik. Mathematics
%D 2013
%P 1701-1711
%V 204
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2013_204_12_a0/
%G en
%F SM_2013_204_12_a0
R. Ya. Budylin; S. O. Gorchinskiy. Intersections of adelic groups on a surface. Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1701-1711. http://geodesic.mathdoc.fr/item/SM_2013_204_12_a0/

[1] A. N. Paršin, “On the arithmetic of two-dimensional schemes. I. Distributions and residues”, Math. USSR-Izv., 10:4 (1976), 695–729 | DOI | MR | Zbl | Zbl

[2] T. Fimmel, A. N. Parshin, An introduction to the higher adelic theory

[3] D. V. Osipov, A. N. Parshin, “Harmonic analysis and the Riemann–Roch theorem”, Dokl. Math., 84:3 (2011), 826–829 | DOI | MR | Zbl

[4] D. V. Osipov, “Krichever correspondence for algebraic varieties”, Izv. Math., 65:5 (2001), 941–975 | DOI | DOI | MR | Zbl

[5] D. V. Osipov, “$n$-dimensional local fields and adeles on $n$-dimensional schemes”, Surveys in contemporary mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008, 131–164 | MR | Zbl

[6] M. Morrow, An introduction to higher dimensional local fields and adeles, arXiv: 1204.0586

[7] A. A. Beǐlinson, “Residues and adeles”, Funct. Anal. Appl., 14:1 (1980), 34–35 | DOI | MR | Zbl

[8] A. Huber, “On the Parshin–Beilinson adeles for schemes”, Abh. Math. Sem. Univ. Hamburg, 61:1 (1991), 249–273 | DOI | MR | Zbl

[9] A. Yekutieli, An explicit construction of the Grothendieck residue complex, With an appendix by Pramathanath Sastry, Astérisque, 208, Soc. Math. de France, Paris, 1992 | MR | Zbl

[10] H. Matsumura, Commutative algebra, Math. Lecture Note Ser., 56, Benjamin, Reading, MA, 1980 | MR | Zbl

[11] D. Eisenbud, Commutative algebra, With a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995 | MR | Zbl

[12] A. N. Parshin, “Chern classes, adeles and $L$-functions”, J. Reine Angew. Math., 341 (1983), 174–192 | DOI | MR | Zbl