Intersections of adelic groups on a~surface
Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1701-1711

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve a technical problem related to adeles on an algebraic surface. Given a finite set of natural numbers, one can associate with it an adelic group. We show that this operation commutes with taking intersections if the surface is defined over an uncountable field, and we provide a counterexample otherwise. Bibliography: 12 titles.
Keywords: higher adeles, higher-dimensional local rings.
@article{SM_2013_204_12_a0,
     author = {R. Ya. Budylin and S. O. Gorchinskiy},
     title = {Intersections of adelic groups on a~surface},
     journal = {Sbornik. Mathematics},
     pages = {1701--1711},
     publisher = {mathdoc},
     volume = {204},
     number = {12},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_12_a0/}
}
TY  - JOUR
AU  - R. Ya. Budylin
AU  - S. O. Gorchinskiy
TI  - Intersections of adelic groups on a~surface
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1701
EP  - 1711
VL  - 204
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_12_a0/
LA  - en
ID  - SM_2013_204_12_a0
ER  - 
%0 Journal Article
%A R. Ya. Budylin
%A S. O. Gorchinskiy
%T Intersections of adelic groups on a~surface
%J Sbornik. Mathematics
%D 2013
%P 1701-1711
%V 204
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_12_a0/
%G en
%F SM_2013_204_12_a0
R. Ya. Budylin; S. O. Gorchinskiy. Intersections of adelic groups on a~surface. Sbornik. Mathematics, Tome 204 (2013) no. 12, pp. 1701-1711. http://geodesic.mathdoc.fr/item/SM_2013_204_12_a0/