On Boolean matrices with full factor rank
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 204 (2013) no. 11, pp. 1691-1699
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is demonstrated that every $(0,1)$-matrix of size $n\times m$ having Boolean rank $n$ contains a column with at least $\sqrt{n}/2-1$ zero entries. This bound is shown to be asymptotically optimal. As a corollary, it is established that the size of a full-rank Boolean matrix is bounded from above by a function of its tropical and determinantal ranks.
Bibliography: 16 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Boolean rank, isolation number.
Mots-clés : $(0,1)$-matrices
                    
                  
                
                
                Mots-clés : $(0,1)$-matrices
@article{SM_2013_204_11_a7,
     author = {Ya. N. Shitov},
     title = {On {Boolean} matrices with full factor rank},
     journal = {Sbornik. Mathematics},
     pages = {1691--1699},
     publisher = {mathdoc},
     volume = {204},
     number = {11},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_11_a7/}
}
                      
                      
                    Ya. N. Shitov. On Boolean matrices with full factor rank. Sbornik. Mathematics, Tome 204 (2013) no. 11, pp. 1691-1699. http://geodesic.mathdoc.fr/item/SM_2013_204_11_a7/
