@article{SM_2013_204_11_a6,
author = {D. A. Khrychev},
title = {On large deviations for ensembles of distributions},
journal = {Sbornik. Mathematics},
pages = {1671--1690},
year = {2013},
volume = {204},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_11_a6/}
}
D. A. Khrychev. On large deviations for ensembles of distributions. Sbornik. Mathematics, Tome 204 (2013) no. 11, pp. 1671-1690. http://geodesic.mathdoc.fr/item/SM_2013_204_11_a6/
[1] S. S. Sritharan, P. Sundar, “Large deviations for the two-dimensional Navier–Stokes equations with multiplicative noise”, Stochastic Process. Appl., 116:11 (2006), 1636–1659 | DOI | MR | Zbl
[2] A. Budhiraja, P. Dupuis, “A variational representation for positive functionals of infinite dimensional Brownian motion”, Probab. Math. Statist., 20:1 (2000), 39–61 | MR | Zbl
[3] U. Manna, S. S. Sritharan, P. Sundar, “Large deviations for the stochastic shell model of turbulence”, NoDEA Nonlinear Differential Equations Appl., 16:4 (2009), 493–521 | DOI | MR | Zbl
[4] J. Duan, A. Millet, “Large deviations for the Boussinesq equations under random influences”, Stochastic Process. Appl., 119:6 (2009), 2052–2081 | DOI | MR | Zbl
[5] V. Ortiz-López, M. Sanz-Solé, “A Laplace principle for a stochastic wave equation in spatial dimension three”, Stochastic analysis 2010, Springer-Verlag, Heidelberg, 2011, 31–49 | MR | Zbl
[6] M.-H. Chang, “Large deviation for Navier–Stokes equations with small stochastic perturbation”, Appl. Math. Comput., 76:1 (1996), 65–93 | DOI | MR | Zbl
[7] A. A. Pukhalskii, Bolshie ukloneniya stokhasticheskikh dinamicheskikh sistem. Teoriya i prilozheniya, Fizmatlit, M., 2005
[8] J. Feng, T. G. Kurtz, Large deviations for stochastic processes, Math. Surveys Monogr., 131, Amer. Math. Soc., Providence, RI, 2006 | MR | Zbl
[9] P. Marin-Rubio, J. C. Robinson, “Attractors for the stochastic 3D Navier–Stokes equations”, Stoch. Dyn., 3:3 (2003), 279–297 | DOI | MR | Zbl
[10] C. Odasso, “Exponential mixing for stochastic PDEs: the non-additive case”, Probab. Theory Related Fields, 140:1–2 (2008), 41–82 | DOI | MR | Zbl
[11] M. I. Vishik, A. I. Komech, A. V. Fursikov, “Some mathematical problems of statistical hyromechanics”, Russian Math. Surveys, 34:5 (1979), 149–234 | DOI | MR | Zbl
[12] D. A. Hryčev, “On a certain stochastic quasilinear hyperbolic equation”, Math. USSR-Sb., 44:3 (1983), 363–388 | DOI | MR | Zbl | Zbl
[13] D. A. Khrychev, “Optimal programmed controls: existence and approximation”, Sb. Math., 192:5 (2001), 763–783 | DOI | DOI | MR | Zbl
[14] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, de Gruyter, Paris, 1969 | MR | MR | Zbl | Zbl