Elastic waves trapped by a homogeneous anisotropic semicylinder
Sbornik. Mathematics, Tome 204 (2013) no. 11, pp. 1639-1670 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is established that the problem of elastic oscillations of a homogeneous anisotropic semicylinder (console) with traction-free lateral surface (Neumann boundary condition) has no eigenvalues when the console is clamped at one end (Dirichlet boundary condition). If the end is free, under additional requirements of elastic and geometric symmetry, simple sufficient conditions are found for the existence of an eigenvalue embedded in the continuous spectrum and generating a trapped elastic wave, that is, one which decays at infinity at an exponential rate. The results are obtained by generalizing the methods developed for scalar problems, which however require substantial modification for the vector problem in elasticity theory. Examples are given and open questions are stated. Bibliography: 53 titles.
Keywords: homogeneous anisotropic semicylinder, trapped waves, point spectrum on the continuous spectrum, artificial boundary conditions.
@article{SM_2013_204_11_a5,
     author = {S. A. Nazarov},
     title = {Elastic waves trapped by a~homogeneous anisotropic semicylinder},
     journal = {Sbornik. Mathematics},
     pages = {1639--1670},
     year = {2013},
     volume = {204},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_11_a5/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Elastic waves trapped by a homogeneous anisotropic semicylinder
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1639
EP  - 1670
VL  - 204
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_11_a5/
LA  - en
ID  - SM_2013_204_11_a5
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Elastic waves trapped by a homogeneous anisotropic semicylinder
%J Sbornik. Mathematics
%D 2013
%P 1639-1670
%V 204
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2013_204_11_a5/
%G en
%F SM_2013_204_11_a5
S. A. Nazarov. Elastic waves trapped by a homogeneous anisotropic semicylinder. Sbornik. Mathematics, Tome 204 (2013) no. 11, pp. 1639-1670. http://geodesic.mathdoc.fr/item/SM_2013_204_11_a5/

[1] P. Helnwein, “Some remarks on the compressed matrix representation of symmetric second-order and fourth-order tensors”, Comput. Methods Appl. Mech. Engrg., 190:22–23 (2001), 2753–2770 | DOI | MR | Zbl

[2] A. Bertram, Elasticity and plasticity of large deformations, Springer-Verlag, Berlin, 2005 | MR | Zbl

[3] S. G. Lekhnitskiǐ, Theory of elasticity of an anisotropic elastic body, Holden-Day, San Francisco, 1963 | MR | MR | Zbl | Zbl

[4] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002

[5] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, Paris, 1968 | MR | MR | Zbl | Zbl

[6] M. S. Birman, M. Z. Solomyak, Spectral-theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), Kluwer Acad. Publ., Dordrecht, 1987 | MR | MR | Zbl

[7] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16, Iz-vo Mosk. un-ta, M., 1967, 209–292 | MR | Zbl

[8] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, de Gruyter, Berlin, 1994 | MR | Zbl

[9] G. Cardone, T. Durante, S. A. Nazarov, “The localization effect for eigenfunctions of the mixed boundary value problem in a thin cylinder with distorted ends”, SIAM J. Math. Anal., 42:6 (2010), 2581–2609 | DOI | MR | Zbl

[10] F. Rellich, “Über das asymptotische Verhalten der Lösungen von $\Delta u+\lambda u=0$ in unendlichen Gebieten”, Jber. Deutsch. Math. Verein., 53:1 (1943), 57–65 | MR | Zbl

[11] M. L. Williams, “Stress singularities resulting from various boundary conditions in angular corners of plate in extension”, J. Appl. Mech., 19:2 (1952), 526–528

[12] V. Z. Parton, P. I. Perlin, Mathematical methods of the theory of elasticity, v. I, II, Mir, Moscow, 1984 | MR | MR | Zbl | Zbl

[13] V. A. Kozlov, V. G. Maz'ya, “Spectral properties of the operator bundles generated by elliptic boundary-value problems in a cone”, Funct. Anal. Appl., 22:2 (1988), 114–121 | DOI | MR | Zbl

[14] D. V. Evans, M. Levitin, D. Vasil'ev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl

[15] C. M. Linton, P. McIver, “Embedded trapped modes in water waves and acoustics”, Wave Motion, 45:1–2 (2007), 16–29 | DOI | MR | Zbl

[16] S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains”, Sobolev spaces in mathematics, v. II, Int. Math. Ser. (N. Y.), 9, Springer-Verlag, Berlin, 2008, 261–309 | MR | Zbl

[17] S. A. Nazarov, “Trapped modes in a cylindrical elastic waveguide with a damping gasket”, Comput. Math. Math. Phys., 48:5 (2008), 816–833 | DOI | MR | Zbl

[18] G. Cardone, V. Minutolo, S. A. Nazarov, “Gaps in the essential spectrum of periodic elastic waveguides”, ZAMM Z. Angew. Math. Mech., 89:9 (2009), 729–741 | DOI | MR | Zbl

[19] S. A. Nazarov, “The asymptotics of frequencies of elastic waves trapped by a small crack in an anisotropic waveguide”, Mechanics of Solids, 45 (2010), 856–864

[20] P. Duclos, P. Exner, “Curvature-induced bound states in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7:1 (1995), 73–102 | DOI | MR | Zbl

[21] I. V. Kamotskii, S. A. Nazarov, “Exponentially decreasing solutions of diffraction problems on a rigid periodic boundary”, Math. Notes, 73:1–2 (2003), 129–131 | DOI | MR | Zbl

[22] S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold”, Sib. Math. J., 51:5 (2010), 866–878 | DOI | MR | Zbl

[23] I. Roitberg, D. Vassiliev, T. Weidl, “Edge resonance in an elastic semi-strip”, Quart. J. Mech. Appl. Math., 51:1 (1998), 1–13 | DOI | MR | Zbl

[24] B. A. Auld, E. M. Tsao, “A variational analysis of edge resonance in a semi-infinite plate”, IEEE Trans. Sonics Ultrason., 24:5 (1977), 317–326 | DOI

[25] M. Koshiba, S. Karakida, M. Suzuki, “Finite-element analysis of edge resonance in a semi-infinite elastic plate”, Electron. Lett., 19:7 (1983), 256–257 | DOI

[26] E. Le Clezio, M. V. Predoi, M. Constaings, B. Hosten, M. Rousseau, “Numerical predictions and experiments on the free-plate edge mode”, Ultrasonics, 41:1 (2003), 25–40 | DOI

[27] M. Zernov, A.V. Pichugin, J. Kaplunov, “Eigenvalue of a semi-infinite elastic strip”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462:2068 (2006), 1255–1270 | DOI | MR | Zbl

[28] V. Pagneux, “Revisiting the edge resonance for Lamb waves in a semi-infinite plate”, J. Acoust. Soc. Am., 120:2 (2006), 649–656 | DOI

[29] M. Zernov, J. Kaplunov, “Three-dimensional edge waves in plates”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464:2090 (2008), 301–318 | DOI | MR | Zbl

[30] A. Holst, D. Vassiliev, “Edge resonance in an elastic semi-infinite cylinder”, Appl. Anal., 74:3–4 (2000), 479–495 | DOI | MR | Zbl

[31] H. D. McNiven, “Extensional waves in a semi-infinite elastic rod”, J. Acoust. Soc. Amer., 33 (1961), 23–27 | DOI | MR

[32] J. Zemanek, Jr., “An experimental and theoretical investigation of elastic wave propagation in a cylinder”, J. Acoust. Soc. Amer., 51:1 (1972), 265–283 | DOI | Zbl

[33] R. D. Gregory, I. Gladwell, “Axisymmetric waves in a semi-infinite elastic rod”, Quart. J. Mech. Appl. Math., 33:2 (1998), 327–337 | DOI | MR | Zbl

[34] V. Pagneux, “Complex resonance and localized vibrations at the edge of a semi-infinite elastic cylinder”, Math. Mech. Solids, 17:1 (2011), 17–26 | DOI | MR

[35] C. Müller, “On the behavior of the solutions of the differential equation $\Delta u=F(x,u)$ in the neighborhood of a point”, Comm. Pure Appl. Math., 7 (1954), 505–515 | DOI | MR | Zbl

[36] M. H. Protter, “Unique continuation for elliptic equations”, Trans. Amer. Math. Soc., 95 (1960), 81–91 | DOI | MR | Zbl

[37] R. Leis, Initial-boundary value problems in mathematical physics, Teubner, Stuttgart, 1986 | MR | Zbl

[38] A. Pliš, “A smooth linear elliptic differential equation without any solution in a sphere”, Comm. Pure Appl. Math., 14 (1961), 599–617 | DOI | MR | Zbl

[39] L. Bers, F. John, M. Schehter, Partial differential equations (Boulder, Colorado, 1957), Interscience, New York, 1964 | MR | Zbl

[40] S. Langer, S. A. Nazarov, M. Specovius-Neugebauer, “Affine transforms of three-dimensional anisotropic media and explicit formulas for fundamental matrices”, J. Appl. Mech. Tech. Phys., 47:2 (2006), 229–235 | DOI | MR | Zbl

[41] V. A. Kondratev, “O gladkosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Differents. uravneniya, 6:10 (1970), 1831–1843 | MR | Zbl

[42] V. G. Mazya, B. A. Plamenevskii, “Ob elliptichnosti kraevykh zadach v oblastyakh s kusochno gladkoi granitsei”, Tr. simpoziuma po mekh. sploshnykh sred i rodstvennym probl. analiza, 1, Metsniereba, Tbilisi, 1973, 171–181 | MR | Zbl

[43] V. G. Mazya, B. A. Plamenevskii, “Shauderovskie otsenki reshenii ellipticheskikh kraevykh zadach v oblastyakh s rebrami na granitse”, Differents. uravneniya s chastnymi proizvodnymi, Tr. sem. S. L. Soboleva, 2, Izd-vo SO AN SSSR, Novosibirsk, 1978, 69–102 | MR

[44] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 ; I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl

[45] G. Duvaut, J.-L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972 | MR | MR | Zbl | Zbl

[46] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | MR | Zbl | Zbl

[47] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76:1 (1977), 29–60 | DOI | MR | Zbl

[48] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77:1 (1978), 25–82 | DOI | MR | Zbl

[49] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | DOI | MR | Zbl

[50] M. S. Agranovich, M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Russian Math. Surveys, 19:3 (1964), 53–157 | DOI | MR | Zbl

[51] M. M. Vainberg, V. A. Trenogin, Theory of branching of solutions of non-linear equations, Transl. Math. Monogr., 26, Noordhoff, Leyden, 1974 | MR | MR | Zbl | Zbl

[52] S. A. Nazarov, “Localized elastic fields in periodic waveguides with defects”, J. Appl. Mech. Tech. Phys., 52:2 (2011), 311–320 | DOI | MR

[53] S. A. Nazarov, “The interface crack in anisotropic bodies. Stress singularities and invariant integrals”, J. Appl. Math. Mech., 62:3 (1998), 453–464 | DOI | MR | Zbl