@article{SM_2013_204_11_a5,
author = {S. A. Nazarov},
title = {Elastic waves trapped by a~homogeneous anisotropic semicylinder},
journal = {Sbornik. Mathematics},
pages = {1639--1670},
year = {2013},
volume = {204},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_11_a5/}
}
S. A. Nazarov. Elastic waves trapped by a homogeneous anisotropic semicylinder. Sbornik. Mathematics, Tome 204 (2013) no. 11, pp. 1639-1670. http://geodesic.mathdoc.fr/item/SM_2013_204_11_a5/
[1] P. Helnwein, “Some remarks on the compressed matrix representation of symmetric second-order and fourth-order tensors”, Comput. Methods Appl. Mech. Engrg., 190:22–23 (2001), 2753–2770 | DOI | MR | Zbl
[2] A. Bertram, Elasticity and plasticity of large deformations, Springer-Verlag, Berlin, 2005 | MR | Zbl
[3] S. G. Lekhnitskiǐ, Theory of elasticity of an anisotropic elastic body, Holden-Day, San Francisco, 1963 | MR | MR | Zbl | Zbl
[4] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002
[5] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, Paris, 1968 | MR | MR | Zbl | Zbl
[6] M. S. Birman, M. Z. Solomyak, Spectral-theory of self-adjoint operators in Hilbert space, Math. Appl. (Soviet Ser.), Kluwer Acad. Publ., Dordrecht, 1987 | MR | MR | Zbl
[7] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16, Iz-vo Mosk. un-ta, M., 1967, 209–292 | MR | Zbl
[8] S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Exp. Math., 13, de Gruyter, Berlin, 1994 | MR | Zbl
[9] G. Cardone, T. Durante, S. A. Nazarov, “The localization effect for eigenfunctions of the mixed boundary value problem in a thin cylinder with distorted ends”, SIAM J. Math. Anal., 42:6 (2010), 2581–2609 | DOI | MR | Zbl
[10] F. Rellich, “Über das asymptotische Verhalten der Lösungen von $\Delta u+\lambda u=0$ in unendlichen Gebieten”, Jber. Deutsch. Math. Verein., 53:1 (1943), 57–65 | MR | Zbl
[11] M. L. Williams, “Stress singularities resulting from various boundary conditions in angular corners of plate in extension”, J. Appl. Mech., 19:2 (1952), 526–528
[12] V. Z. Parton, P. I. Perlin, Mathematical methods of the theory of elasticity, v. I, II, Mir, Moscow, 1984 | MR | MR | Zbl | Zbl
[13] V. A. Kozlov, V. G. Maz'ya, “Spectral properties of the operator bundles generated by elliptic boundary-value problems in a cone”, Funct. Anal. Appl., 22:2 (1988), 114–121 | DOI | MR | Zbl
[14] D. V. Evans, M. Levitin, D. Vasil'ev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl
[15] C. M. Linton, P. McIver, “Embedded trapped modes in water waves and acoustics”, Wave Motion, 45:1–2 (2007), 16–29 | DOI | MR | Zbl
[16] S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains”, Sobolev spaces in mathematics, v. II, Int. Math. Ser. (N. Y.), 9, Springer-Verlag, Berlin, 2008, 261–309 | MR | Zbl
[17] S. A. Nazarov, “Trapped modes in a cylindrical elastic waveguide with a damping gasket”, Comput. Math. Math. Phys., 48:5 (2008), 816–833 | DOI | MR | Zbl
[18] G. Cardone, V. Minutolo, S. A. Nazarov, “Gaps in the essential spectrum of periodic elastic waveguides”, ZAMM Z. Angew. Math. Mech., 89:9 (2009), 729–741 | DOI | MR | Zbl
[19] S. A. Nazarov, “The asymptotics of frequencies of elastic waves trapped by a small crack in an anisotropic waveguide”, Mechanics of Solids, 45 (2010), 856–864
[20] P. Duclos, P. Exner, “Curvature-induced bound states in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7:1 (1995), 73–102 | DOI | MR | Zbl
[21] I. V. Kamotskii, S. A. Nazarov, “Exponentially decreasing solutions of diffraction problems on a rigid periodic boundary”, Math. Notes, 73:1–2 (2003), 129–131 | DOI | MR | Zbl
[22] S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold”, Sib. Math. J., 51:5 (2010), 866–878 | DOI | MR | Zbl
[23] I. Roitberg, D. Vassiliev, T. Weidl, “Edge resonance in an elastic semi-strip”, Quart. J. Mech. Appl. Math., 51:1 (1998), 1–13 | DOI | MR | Zbl
[24] B. A. Auld, E. M. Tsao, “A variational analysis of edge resonance in a semi-infinite plate”, IEEE Trans. Sonics Ultrason., 24:5 (1977), 317–326 | DOI
[25] M. Koshiba, S. Karakida, M. Suzuki, “Finite-element analysis of edge resonance in a semi-infinite elastic plate”, Electron. Lett., 19:7 (1983), 256–257 | DOI
[26] E. Le Clezio, M. V. Predoi, M. Constaings, B. Hosten, M. Rousseau, “Numerical predictions and experiments on the free-plate edge mode”, Ultrasonics, 41:1 (2003), 25–40 | DOI
[27] M. Zernov, A.V. Pichugin, J. Kaplunov, “Eigenvalue of a semi-infinite elastic strip”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462:2068 (2006), 1255–1270 | DOI | MR | Zbl
[28] V. Pagneux, “Revisiting the edge resonance for Lamb waves in a semi-infinite plate”, J. Acoust. Soc. Am., 120:2 (2006), 649–656 | DOI
[29] M. Zernov, J. Kaplunov, “Three-dimensional edge waves in plates”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 464:2090 (2008), 301–318 | DOI | MR | Zbl
[30] A. Holst, D. Vassiliev, “Edge resonance in an elastic semi-infinite cylinder”, Appl. Anal., 74:3–4 (2000), 479–495 | DOI | MR | Zbl
[31] H. D. McNiven, “Extensional waves in a semi-infinite elastic rod”, J. Acoust. Soc. Amer., 33 (1961), 23–27 | DOI | MR
[32] J. Zemanek, Jr., “An experimental and theoretical investigation of elastic wave propagation in a cylinder”, J. Acoust. Soc. Amer., 51:1 (1972), 265–283 | DOI | Zbl
[33] R. D. Gregory, I. Gladwell, “Axisymmetric waves in a semi-infinite elastic rod”, Quart. J. Mech. Appl. Math., 33:2 (1998), 327–337 | DOI | MR | Zbl
[34] V. Pagneux, “Complex resonance and localized vibrations at the edge of a semi-infinite elastic cylinder”, Math. Mech. Solids, 17:1 (2011), 17–26 | DOI | MR
[35] C. Müller, “On the behavior of the solutions of the differential equation $\Delta u=F(x,u)$ in the neighborhood of a point”, Comm. Pure Appl. Math., 7 (1954), 505–515 | DOI | MR | Zbl
[36] M. H. Protter, “Unique continuation for elliptic equations”, Trans. Amer. Math. Soc., 95 (1960), 81–91 | DOI | MR | Zbl
[37] R. Leis, Initial-boundary value problems in mathematical physics, Teubner, Stuttgart, 1986 | MR | Zbl
[38] A. Pliš, “A smooth linear elliptic differential equation without any solution in a sphere”, Comm. Pure Appl. Math., 14 (1961), 599–617 | DOI | MR | Zbl
[39] L. Bers, F. John, M. Schehter, Partial differential equations (Boulder, Colorado, 1957), Interscience, New York, 1964 | MR | Zbl
[40] S. Langer, S. A. Nazarov, M. Specovius-Neugebauer, “Affine transforms of three-dimensional anisotropic media and explicit formulas for fundamental matrices”, J. Appl. Mech. Tech. Phys., 47:2 (2006), 229–235 | DOI | MR | Zbl
[41] V. A. Kondratev, “O gladkosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Differents. uravneniya, 6:10 (1970), 1831–1843 | MR | Zbl
[42] V. G. Mazya, B. A. Plamenevskii, “Ob elliptichnosti kraevykh zadach v oblastyakh s kusochno gladkoi granitsei”, Tr. simpoziuma po mekh. sploshnykh sred i rodstvennym probl. analiza, 1, Metsniereba, Tbilisi, 1973, 171–181 | MR | Zbl
[43] V. G. Mazya, B. A. Plamenevskii, “Shauderovskie otsenki reshenii ellipticheskikh kraevykh zadach v oblastyakh s rebrami na granitse”, Differents. uravneniya s chastnymi proizvodnymi, Tr. sem. S. L. Soboleva, 2, Izd-vo SO AN SSSR, Novosibirsk, 1978, 69–102 | MR
[44] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 ; I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl
[45] G. Duvaut, J.-L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972 | MR | MR | Zbl | Zbl
[46] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | MR | Zbl | Zbl
[47] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76:1 (1977), 29–60 | DOI | MR | Zbl
[48] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77:1 (1978), 25–82 | DOI | MR | Zbl
[49] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | DOI | MR | Zbl
[50] M. S. Agranovich, M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Russian Math. Surveys, 19:3 (1964), 53–157 | DOI | MR | Zbl
[51] M. M. Vainberg, V. A. Trenogin, Theory of branching of solutions of non-linear equations, Transl. Math. Monogr., 26, Noordhoff, Leyden, 1974 | MR | MR | Zbl | Zbl
[52] S. A. Nazarov, “Localized elastic fields in periodic waveguides with defects”, J. Appl. Mech. Tech. Phys., 52:2 (2011), 311–320 | DOI | MR
[53] S. A. Nazarov, “The interface crack in anisotropic bodies. Stress singularities and invariant integrals”, J. Appl. Math. Mech., 62:3 (1998), 453–464 | DOI | MR | Zbl