Optimal control and Galois theory
Sbornik. Mathematics, Tome 204 (2013) no. 11, pp. 1624-1638 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An important role is played in the solution of a class of optimal control problems by a certain special polynomial of degree $2(n-1)$ with integer coefficients. The linear independence of a family of $k$ roots of this polynomial over the field $\mathbb{Q}$ implies the existence of a solution of the original problem with optimal control in the form of an irrational winding of a $k$-dimensional Clifford torus, which is passed in finite time. In the paper, we prove that for $n\le15$ one can take an arbitrary positive integer not exceeding $[{n}/{2}]$ for $k$. The apparatus developed in the paper is applied to the systems of Chebyshev-Hermite polynomials and generalized Chebyshev-Laguerre polynomials. It is proved that for such polynomials of degree $2m$ every subsystem of $[(m+1)/2]$ roots with pairwise distinct squares is linearly independent over the field $\mathbb{Q}$. Bibliography: 11 titles.
Keywords: Pontryagin's maximum principle, Lie algebra, dense winding
Mots-clés : Galois group, orthogonal polynomials.
@article{SM_2013_204_11_a4,
     author = {M. I. Zelikin and D. D. Kiselev and L. V. Lokutsievskii},
     title = {Optimal control and {Galois} theory},
     journal = {Sbornik. Mathematics},
     pages = {1624--1638},
     year = {2013},
     volume = {204},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_11_a4/}
}
TY  - JOUR
AU  - M. I. Zelikin
AU  - D. D. Kiselev
AU  - L. V. Lokutsievskii
TI  - Optimal control and Galois theory
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1624
EP  - 1638
VL  - 204
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_11_a4/
LA  - en
ID  - SM_2013_204_11_a4
ER  - 
%0 Journal Article
%A M. I. Zelikin
%A D. D. Kiselev
%A L. V. Lokutsievskii
%T Optimal control and Galois theory
%J Sbornik. Mathematics
%D 2013
%P 1624-1638
%V 204
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2013_204_11_a4/
%G en
%F SM_2013_204_11_a4
M. I. Zelikin; D. D. Kiselev; L. V. Lokutsievskii. Optimal control and Galois theory. Sbornik. Mathematics, Tome 204 (2013) no. 11, pp. 1624-1638. http://geodesic.mathdoc.fr/item/SM_2013_204_11_a4/

[1] M. I. Zelikin, L. V. Lokutsievskiy, R. Hildebrand, “Geometry of neighborhoods of singular trajectories in problems with multidimensional control”, Proc. Steklov Inst. Math., 277 (2012), 67–83 | DOI | MR

[2] I. Kupka, “Generic properties of extremals in optimal control problems”, Differential geometric control theory (Houghton, MI, 1982), Progr. Math., 27, Birkhäuser, Boston, MA, 1983, 310–315 | MR | Zbl

[3] M. I. Zelikin, V. F. Borisov, Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Systems Control Found. Appl., Birkhäuser, Boston, MA, 1994 | MR | Zbl

[4] A. A. Milyutin, A. E. Ilyutovich, N. P. Osmolovskii, S. V. Chukanov, Optimalnoe upravlenie v lineinykh sistemakh, Nauka, M., 1993 | MR | Zbl

[5] A. I. Kostrikin, Vvedenie v algebru. Chast III. Osnovnye struktury algebry, Fizmatlit, M., 2001 | Zbl

[6] F. Hajir, “Algebraic properties of a family of generalized Laguerre polynomials”, Canad. J. Math., 61:3 (2009), 583–603 | DOI | MR | Zbl

[7] F. Hajir, “On the Galois group of generalized Laguerre polynomials”, J. Théor. Nombres Bordeaux, 17:2 (2005), 517–525 | DOI | MR | Zbl

[8] B. B. Lur'e, “A criterion for unsolvability by radicals of an equation of prime degree”, Dokl. Math., 67:1 (2003), 42–43 | MR | Zbl

[9] V. V. Ishkhanov, B. B. Lur'e, D. K. Faddeev, The embedding problem in Galois theory, Transl. Math. Monogr., 165, Amer. Math. Soc., Providence, RI, 1997 | MR | MR | Zbl | Zbl

[10] N. V. Durov, “Computation of the Galois group of a polynomial with rational coefficients. I”, J. Math. Sci. (N. Y.), 134:6 (2006), 2511–2548 | DOI | MR | Zbl

[11] N. V. Durov, “Computation of the Galois group of a polynomial with rational coefficients. II”, J. Math. Sci. (N. Y.), 136:3 (2006), 3880–3907 | DOI | MR | Zbl