A decomposition theorem for the space of $C^1$-smooth skew products with complicated dynamics of the quotient map
Sbornik. Mathematics, Tome 204 (2013) no. 11, pp. 1598-1623

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the notions of the $\Omega$-function and functions suitable to it, to give a detailed proof of a decomposition theorem for the space of $C^{1}$-smooth skew products of interval maps whose quotient maps have complicated dynamics and satisfy the additional condition of $\Omega$-stability with respect to the $C^1$-norm. In our theorem, the space of $C^1$-smooth skew products is decomposed into a union of four nonempty, pairwise disjoint subspaces. We give examples of maps contained in each of the four subspaces. Bibliography: 46 titles.
Keywords: skew product, nonwandering set, $\Omega$-function, suitable functions.
Mots-clés : quotient map
@article{SM_2013_204_11_a3,
     author = {L. S. Efremova},
     title = {A decomposition theorem for the space of $C^1$-smooth skew products with complicated dynamics of the quotient map},
     journal = {Sbornik. Mathematics},
     pages = {1598--1623},
     publisher = {mathdoc},
     volume = {204},
     number = {11},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_11_a3/}
}
TY  - JOUR
AU  - L. S. Efremova
TI  - A decomposition theorem for the space of $C^1$-smooth skew products with complicated dynamics of the quotient map
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1598
EP  - 1623
VL  - 204
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_11_a3/
LA  - en
ID  - SM_2013_204_11_a3
ER  - 
%0 Journal Article
%A L. S. Efremova
%T A decomposition theorem for the space of $C^1$-smooth skew products with complicated dynamics of the quotient map
%J Sbornik. Mathematics
%D 2013
%P 1598-1623
%V 204
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2013_204_11_a3/
%G en
%F SM_2013_204_11_a3
L. S. Efremova. A decomposition theorem for the space of $C^1$-smooth skew products with complicated dynamics of the quotient map. Sbornik. Mathematics, Tome 204 (2013) no. 11, pp. 1598-1623. http://geodesic.mathdoc.fr/item/SM_2013_204_11_a3/