Mots-clés : quotient map
@article{SM_2013_204_11_a3,
author = {L. S. Efremova},
title = {A decomposition theorem for the space of $C^1$-smooth skew products with complicated dynamics of the quotient map},
journal = {Sbornik. Mathematics},
pages = {1598--1623},
year = {2013},
volume = {204},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_11_a3/}
}
TY - JOUR AU - L. S. Efremova TI - A decomposition theorem for the space of $C^1$-smooth skew products with complicated dynamics of the quotient map JO - Sbornik. Mathematics PY - 2013 SP - 1598 EP - 1623 VL - 204 IS - 11 UR - http://geodesic.mathdoc.fr/item/SM_2013_204_11_a3/ LA - en ID - SM_2013_204_11_a3 ER -
L. S. Efremova. A decomposition theorem for the space of $C^1$-smooth skew products with complicated dynamics of the quotient map. Sbornik. Mathematics, Tome 204 (2013) no. 11, pp. 1598-1623. http://geodesic.mathdoc.fr/item/SM_2013_204_11_a3/
[1] A. Puankare, O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, M.-L., 1947
[2] L. G. Shnirelman, “Primer odnogo preobrazovaniya ploskosti”, Izv. Donskogo politekhn. in-ta v Novocherkasske, nauchn. otd., fiz.-mat. chast, 1930, no. 14, 64–74
[3] A. S. Besikovitch, “A problem on topological transformation”, Fund. Math., 1937, no. 28, 61–65 | Zbl
[4] G. A. Hedlund, “A class of transformations of the plane”, Proc. Cambridge Philos. Soc., 51:4 (1955), 554–564 | DOI | MR | Zbl
[5] D. V. Anosov, “On an additive functional homology equation connected with an ergodic rotation of the circle”, Math. USSR-Izv., 7:6 (1973), 1257–1271 | DOI | MR | Zbl | Zbl
[6] A. B. Krygin, “On $\omega$-limit sets of a cylindrical cascade”, Math. USSR-Izv., 9:4 (1975), 831–849 | DOI | MR | Zbl | Zbl
[7] A. B. Krygin, “$\omega$-limit sets of smooth cylindrical cascades”, Math. Notes, 23:6 (1978), 479–485 | DOI | MR | Zbl | Zbl
[8] E. A. Sidorov, “Topological transitivity of cylindrical cascades”, Math. Notes, 14:3 (1973), 810–816 | DOI | MR | Zbl | Zbl
[9] N. N. Krylov, N. N. Bogolyubov, “Zagalna teoriya miri ta ii zastosuvaniya do vivcheniya dinamichnikh sistem neliniinii mekhanitsi”, Zbirnik prats z neliniinii mekhaniniki, Zapiski kafedri matematichnoi fiziki Institutu budivelnoi mekhaniki AN URSR, 3, 1937, 55–112; Н. Н. Боголюбов, “Общая теория меры в нелинейной механике”, Избранные труды, I, Наукова думка, Киев, 1969, 411–463
[10] H. Anzai, “Ergodic skew product transformations on the torus”, Osaka Math. J., 3:1 (1951), 83–99 | MR | Zbl
[11] L. S. Efremova, “On the concept of $\Omega$-function for the skew product of interval mappings”, J. Math. Sci. (New York), 105:1 (2001), 1779–1798 | DOI | MR | Zbl
[12] L. S. Efremova, “Space of $C^1$-smooth skew products of maps of an interval”, Theoret. and Math. Phys., 164:3 (2010), 1208–1214 | DOI | DOI | Zbl
[13] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Univ. Press, Princeton, NJ, 1960 | MR | MR | Zbl | Zbl
[14] A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[15] L. S. Efremova, “O nebluzhdayuschem mnozhestve i tsentre treugolnykh otobrazhenii s zamknutym mnozhestvom periodicheskikh tochek v baze”, Dinamicheskie sistemy i nelineinye yavleniya, In-t matem. AN Ukrainy, Kiev, 1990, 15–25 | MR
[16] K. Kuratowski, Topology, v. 1, 2, Academic Press, New York–London, 1968 | MR | MR | MR | MR | Zbl | Zbl
[17] J.-P. Aubin, I. Ekeland, Applied nonlinear analysis, Wiley, New York, 1984 | MR | MR | Zbl
[18] J. Stark, “Regularity of invariant graphs for forced systems”, Ergodic Theory Dynam. Systems, 19:1 (1999), 155–199 | DOI | MR | Zbl
[19] T. H. Jäger, “On the structure of strange non-chaotic attractors in pinched skew products”, Ergodic Theory Dynam. Systems, 27:2 (2007), 493-510 | DOI | MR | Zbl
[20] E. M. Coven, Z. Nitecki, “Non-wandering sets of the powers of maps of the interval”, Ergodic Theory Dynamical Systems, 1:1 (1981), 9–31 | MR | Zbl
[21] M. B. Vereikina, A. N. Sharkovskii, “Vozvraschaemost v odnomernykh dinamicheskikh sistemakh”, Priblizhennye i kachestvennye issledovaniya differentsialnykh i differentsialno-funktsionalnykh uravnenii, In-t matem. AN Ukrainy, Kiev, 1983, 35–46 | MR
[22] L. S. Efremova, “Example of the smooth skew product in the plane with the one-dimensional ramified continuum as the global attractor”, European Conference on Iteration Theory, ESAIM Proc., 36, EDP Sci., Les Ulis, 2012, 15–25 | DOI | MR
[23] L. S. Efremova, “Remarks on the nonwandering set of skew products with a closed set of periodic points of the quotient map”, Springer Proc. Math., eds. M. Peixoto, A. Pinto, D. Rand, Springer-Verlag, Berlin, 2013
[24] R. Markarian, M. J. Pacifico, J. L. Vietez, “Exponential speed of mixing for skew products with singularities”, Nonlinearity, 26:1 (2013), 269–287 | MR | Zbl
[25] D. V. Anosov, “Structurally stable systems”, Proc. Steklov Inst. Math., 169 (1986), 61–95 | MR | Zbl
[26] W. de Melo, S. van Strien, One-dimensional dynamics, Ergeb. Math. Grenzgeb. (3), Springer-Verlag, Berlin, 1993 | MR | Zbl
[27] M. V. Jakobson, “On smooth mappings of the circle into itself”, Math. USSR-Sb., 14:2 (1971), 161–185 | DOI | MR | Zbl | Zbl
[28] A. N. Sharkovskii, “O tsiklakh i strukture nepreryvnogo otobrazheniya”, Ukr. matem. zhurnal, 17:3 (1965), 104–111 | MR | Zbl
[29] L. S. Efremova, Periodicheskie dvizheniya diskretnykh poludinamicheskikh sistem, Dis. $\dots$ kand. fiz.-matem. nauk, Gorkovskii universitet, Gorkii, 1981
[30] E. D'Aniello, T. H. Steel, “Approximating $\omega$-limit sets with periodic orbits”, Aequationes Math., 75:1–2 (2008), 93–102 | DOI | MR | Zbl
[31] L. S. Efremova, “Set-valued functions and dynamics of skew products of interval maps”, Progress in nonlinear science (Nizhny Novgorod, 2001), Inst. Appl. Phys., Nizhni Novgorod, 2002, 219–224 | MR
[32] D. V. Anosov, S. Kh. Aranson, V. Z. Grines, R. V. Plykin, E. A. Sataev, A. V. Safonov, V. V. Solodov, A. N. Starkov, A. M. Stepin, S. V. Shlyachkov, “Dinamicheskie sistemy s giperbolicheskim povedeniem”, Dinamicheskie sistemy – 9, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 66, VINITI, M., 1991, 5–242 | MR | Zbl
[33] S. F. Kolyada, “On dynamics of triangular maps of the square”, Ergodic Theory Dynam. Systems, 12:4 (1992), 749–768 | DOI | MR | Zbl
[34] A. G. Maier, “O traektoriyakh v trekhmernom prostranstve”, Dokl. AN SSSR, 56:7 (1946), 477–479
[35] A. G. Maier, “Ob odnoi zadache Birkgofa”, Dokl. AN SSSR, 55:6 (1947), 472–475 | Zbl
[36] A. G. Maier, “O poryadkovom chisle tsentralnykh traektorii”, Dokl. AN SSSR, 59:8 (1948), 1393–1396 | MR | Zbl
[37] A. G. Maier, “O tsentralnykh traektoriyakh i probleme Birkgofa”, Matem. sb., 26(68):2 (1950), 265–290 | MR | Zbl
[38] L. P. Šil'nikov, “On a Poincaré–Birkhoff problem”, Math. USSR-Sb., 3:3 (1967), 353–371 | DOI | MR | Zbl
[39] L. P. Shil'nikov, “On the work of A. G. Maier on central motions”, Math. Notes, 5:3 (1969), 204–206 | DOI | MR | Zbl
[40] P. S. Aleksandrov, Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Nauka, M., 1977 | MR
[41] O. M. Sharkovskii, “Pro odnu teoremu Dzh. Birkgofa”, Dopov. AN URSR. Ser. A, A:5 (1967), 429–432 | MR
[42] S. V. Gonchenko, D. V. Turaev, L. P. Shil'nikov, “Homoclinic tangencies of an arbitrary order in newhouse domains”, J. Math. Sci. (New York), 105:1 (2001), 1738–1778 | DOI | MR | Zbl
[43] T. J. Jech, Lectures in set theory, with particular emphasis on the method of forcing, Lecture Notes in Math., 217, Springer-Verlag, Berlin–New York, 1971 | MR | MR | Zbl | Zbl
[44] T. Fisher, “Entropic stability”, The VI-th Intern. Conf. on Diff. and Function. Diff. Equations (Moscow, 2011), 2011, 20–21
[45] J. Buzzi, T. Fisher, M. Sambarino, C. Vásquez, “Maximal entropy measures for certain partially hyperbolic, derived from Anosov systems”, Ergodic Theory Dynam. Systems, 32:1 (2012), 63–79 | DOI | MR | Zbl
[46] L. S. Efremova, “L. P. Shil'nikov's paper “On the work of A. G. Maier on central motions” and dynamics of skew products”, Intern. Conf. “Dynamics, bifurcations and strange attractors”, 2013, 32