Closeness to spheres of hypersurfaces with normal curvature bounded below
Sbornik. Mathematics, Tome 204 (2013) no. 11, pp. 1565-1583
Voir la notice de l'article provenant de la source Math-Net.Ru
For a Riemannian manifold $M^{n+1}$ and a compact domain $\Omega \subset\nobreak M^{n+1}$ bounded by a hypersurface $\partial\Omega$ with normal curvature bounded below, estimates are obtained in terms of the distance from $O$ to $\partial\Omega$ for the angle between the geodesic line joining a fixed interior point $O$ in $\Omega$ to a point on $\partial\Omega$ and the outward normal to the surface. Estimates for the width of a spherical shell containing such a hypersurface are also presented.
Bibliography: 9 titles.
Keywords:
Riemannian manifold, sectional curvature, normal curvature of a hypersurface, comparison theorems
Mots-clés : $\lambda$-convex hypersurface.
Mots-clés : $\lambda$-convex hypersurface.
@article{SM_2013_204_11_a1,
author = {A. A. Borisenko and K. D. Drach},
title = {Closeness to spheres of hypersurfaces with normal curvature bounded below},
journal = {Sbornik. Mathematics},
pages = {1565--1583},
publisher = {mathdoc},
volume = {204},
number = {11},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_11_a1/}
}
TY - JOUR AU - A. A. Borisenko AU - K. D. Drach TI - Closeness to spheres of hypersurfaces with normal curvature bounded below JO - Sbornik. Mathematics PY - 2013 SP - 1565 EP - 1583 VL - 204 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2013_204_11_a1/ LA - en ID - SM_2013_204_11_a1 ER -
A. A. Borisenko; K. D. Drach. Closeness to spheres of hypersurfaces with normal curvature bounded below. Sbornik. Mathematics, Tome 204 (2013) no. 11, pp. 1565-1583. http://geodesic.mathdoc.fr/item/SM_2013_204_11_a1/