Closeness to spheres of hypersurfaces with normal curvature bounded below
Sbornik. Mathematics, Tome 204 (2013) no. 11, pp. 1565-1583 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a Riemannian manifold $M^{n+1}$ and a compact domain $\Omega \subset\nobreak M^{n+1}$ bounded by a hypersurface $\partial\Omega$ with normal curvature bounded below, estimates are obtained in terms of the distance from $O$ to $\partial\Omega$ for the angle between the geodesic line joining a fixed interior point $O$ in $\Omega$ to a point on $\partial\Omega$ and the outward normal to the surface. Estimates for the width of a spherical shell containing such a hypersurface are also presented. Bibliography: 9 titles.
Keywords: Riemannian manifold, sectional curvature, normal curvature of a hypersurface, comparison theorems
Mots-clés : $\lambda$-convex hypersurface.
@article{SM_2013_204_11_a1,
     author = {A. A. Borisenko and K. D. Drach},
     title = {Closeness to spheres of hypersurfaces with normal curvature bounded below},
     journal = {Sbornik. Mathematics},
     pages = {1565--1583},
     year = {2013},
     volume = {204},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_11_a1/}
}
TY  - JOUR
AU  - A. A. Borisenko
AU  - K. D. Drach
TI  - Closeness to spheres of hypersurfaces with normal curvature bounded below
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1565
EP  - 1583
VL  - 204
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_11_a1/
LA  - en
ID  - SM_2013_204_11_a1
ER  - 
%0 Journal Article
%A A. A. Borisenko
%A K. D. Drach
%T Closeness to spheres of hypersurfaces with normal curvature bounded below
%J Sbornik. Mathematics
%D 2013
%P 1565-1583
%V 204
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2013_204_11_a1/
%G en
%F SM_2013_204_11_a1
A. A. Borisenko; K. D. Drach. Closeness to spheres of hypersurfaces with normal curvature bounded below. Sbornik. Mathematics, Tome 204 (2013) no. 11, pp. 1565-1583. http://geodesic.mathdoc.fr/item/SM_2013_204_11_a1/

[1] W. Blaschke, Kreis und Kugel, de Gruyter, Berlin, 1956 | MR | MR | Zbl | Zbl

[2] A. A. Borisenko, V. Miquel, “Total curvatures of convex hypersurfaces in hyperbolic space”, Illinois J. Math., 43:1 (1999), 61–78 | MR | Zbl

[3] A. A. Borisenko, E. Gallego, A. Reventós, “Relation between area and volume for $\lambda$-convex sets in Hadamard manifolds”, Differential Geom. Appl., 14:3 (2001), 267–280 | DOI | MR | Zbl

[4] A. A. Borisenko, “Convex sets in Hadamard manifolds”, Differential Geom. Appl., 17:2–3 (2002), 111–121 | DOI | MR | Zbl

[5] A. A. Borisenko, K. D. Drach, “O teoreme sravneniya uglov dlya zamknutykh krivykh”, Dopov. NAN Ukr., 6 (2011), 7–11 | MR | Zbl

[6] A. A. Borisenko, V. Miquel, “Comparison theorems on convex hypersurfaces in Hadamard manifolds”, Ann. Global Anal. Geom., 21:2 (2002), 191–202 | DOI | MR | Zbl

[7] P. Petersen, Riemannian geometry, Grad. Texts in Math., 171, Springer-Verlag, New York, 1998 | MR | Zbl

[8] Yu. D. Burago, V. A. Zalgaller, Vvedenie v rimanovu geometriyu, Nauka, SPb., 1994 | MR | Zbl

[9] H. Karcher, “Umkreise und Inkreise konvexer Kurven in der sphärischen und der hyperbolischen Geometrie”, Math. Ann., 177 (1968), 122–132 | DOI | MR | Zbl