Spectral analysis of difference and differential operators in weighted spaces
Sbornik. Mathematics, Tome 204 (2013) no. 11, pp. 1549-1564 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with describing the spectrum of the difference operator $$ \mathscr{K}\colon l_\alpha^p(\mathbb Z,X)\to l_\alpha^p(\mathbb Z,X),\quad (\mathscr{K}x)(n)=Bx(n-1), \ \ n\in\mathbb{Z}, \ \ x\in l_\alpha^p(\mathbb Z,X), $$ with a constant operator coefficient $B$, which is a bounded linear operator in a Banach space $X$. It is assumed that $\mathscr{K}$ acts in the weighted space $l_\alpha^p(\mathbb Z,X)$, $1\leq p\leq \infty$, of two-sided sequences of vectors from $X$. The main results are obtained in terms of the spectrum $\sigma(B)$ of the operator coefficient $B$ and properties of the weight function. Applications to the study of the spectrum of a differential operator with an unbounded operator coefficient (the generator of a strongly continuous semigroup of operators) in weighted function spaces are given. Bibliography: 23 titles.
Keywords: difference operator, differential operator, spectrum of an operator, weighted spaces of sequences and functions.
@article{SM_2013_204_11_a0,
     author = {M. S. Bichegkuev},
     title = {Spectral analysis of difference and differential operators in weighted spaces},
     journal = {Sbornik. Mathematics},
     pages = {1549--1564},
     year = {2013},
     volume = {204},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2013_204_11_a0/}
}
TY  - JOUR
AU  - M. S. Bichegkuev
TI  - Spectral analysis of difference and differential operators in weighted spaces
JO  - Sbornik. Mathematics
PY  - 2013
SP  - 1549
EP  - 1564
VL  - 204
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2013_204_11_a0/
LA  - en
ID  - SM_2013_204_11_a0
ER  - 
%0 Journal Article
%A M. S. Bichegkuev
%T Spectral analysis of difference and differential operators in weighted spaces
%J Sbornik. Mathematics
%D 2013
%P 1549-1564
%V 204
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2013_204_11_a0/
%G en
%F SM_2013_204_11_a0
M. S. Bichegkuev. Spectral analysis of difference and differential operators in weighted spaces. Sbornik. Mathematics, Tome 204 (2013) no. 11, pp. 1549-1564. http://geodesic.mathdoc.fr/item/SM_2013_204_11_a0/

[1] A. G. Baskakov, “Invertibility and the Fredholm property of difference operators”, Math. Notes, 67:6 (2000), 690–698 | DOI | DOI | MR | Zbl

[2] A. Antonevich, A. Lebedev, Functional-differential equations. I. $C^*$-theory, Pitman Monogr. Surveys Pure Appl. Math., 70, Longman, Harlow, 1994 | MR | Zbl

[3] Yu. D. Latushkin, A. M. Stëpin, “Weighted translation operators and linear extensions of dynamical systems”, Russian Math. Surveys, 46:2 (1991), 95–165 | DOI | MR | Zbl

[4] A. G. Baskakov, “Spectral analysis of differential operators with unbounded operator-valued coefficients, difference relations and semigroups of difference relations”, Izv. Math., 73:2 (2009), 215–278 | DOI | DOI | MR | Zbl

[5] A. G. Baskakov, “Analysis of linear differential equations by methods of the spectral theory of difference operators and linear relations”, Russian Math. Surveys, 68:1 (2013), 69–116 | DOI | DOI | MR | Zbl

[6] A. G. Baskakov, “Semigroups of difference operators in spectral analysis of linear differential operators”, Funct. Anal. Appl., 30:3 (1996), 149–157 | DOI | DOI | MR | Zbl

[7] C. Chicone, Yu. Latushkin, Evolution semigroups in dynamical systems and differential equations, Math. Surveys Monogr., 70, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[8] E. Hille, R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., 31, Providence, RI, Amer. Math. Soc., 1957 | MR | MR | Zbl

[9] M. S. Bichegkuev, “On the spectrum of difference and differential operators in weighted spaces”, Funct. Anal. Appl., 44:1 (2010), 65–68 | DOI | DOI | MR | Zbl

[10] N. Dunford, J. T. Schwartz, Linear operators. I. General theory., Pure Appl. Math., 7, Intersci. Publ., New York–London, 1958 | MR | MR | Zbl

[11] A. G. Baskakov, A. I. Pastukhov, “Spectral analysis of a weighted shift operator with unbounded operator coefficients”, Siberian Math. J., 42:6 (2001), 1026–1035 | DOI | MR | Zbl

[12] S. Parrot, Weighted translation operators, Thesis (Ph.D.), University of Michigan, 1965 | MR

[13] M. S. Bichegkuev, “Linear difference and differential operators with unbounded operator coefficients in weight spaces”, Math. Notes, 86:5 (2009), 637–644 | DOI | DOI | MR | Zbl

[14] M. S. Bichegkuev, “On conditions for invertibility of difference and differential operators in weight spaces”, Izv. Math., 75:4 (2011), 665–680 | DOI | DOI | MR | Zbl

[15] M. S. Bichegkuev, S. V. Besaeva, “Spectral properties of difference and differential operators in weighted spaces”, Russian Math. (Iz. VUZ), 55:2 (2011), 13–17 | DOI | MR | Zbl

[16] A. G. Baskakov, K. I. Chernyshov, “Spectral analysis of linear relations and degenerate operator semigroups”, Sb. Math., 193:11 (2002), 1573–1610 | DOI | DOI | Zbl

[17] A. V. Antonevich, Lineinye funktsionalnye uravneniya. Operatornyi podkhod, Universitetskoe, Minsk, 1988 ; A. B. Antonevich, Linear functional equations. Operator approach, Oper. Theory Adv. Appl., 83, Birkhäuser, Basel, 1996 | MR | Zbl | MR | Zbl

[18] M. S. Bichegkuev, “Conditions for solubility of difference inclusions”, Izv. Math., 72:4 (2008), 647–658 | DOI | DOI | MR | Zbl

[19] M. S. Bichegkuev, “On some classes of infinitely differentiable operator semigroups”, Differ. Equ., 46:2 (2010), 224–238 | DOI | MR | Zbl

[20] M. S. Bichegkuev, “To the theory of infinitely differentiable semigroups of operators”, St. Petersburg Math. J., 22:2 (2011), 175–182 | DOI | MR | Zbl

[21] A. G. Baskakov, I. A. Krishtal, “Harmonic analysis of causal operators and their spectral properties”, Izv. Math., 69:3 (2005), 439–486 | DOI | DOI | MR | Zbl

[22] A. G. Baskakov, I. A. Krishtal, “Spectral analysis of operators with the two-point Bohr spectrum”, J. Math. Anal. Appl., 308:2 (2005), 420–439 | DOI | MR | Zbl

[23] M. S. Bichegkuev, “On the exponential dichotomy and spectral properties of difference operators related to the Howland semigroup”, St. Petersburg Math. J., 48:6 (2012), 769–778 | DOI | Zbl