@article{SM_2013_204_10_a3,
author = {I. Kh. Sabitov},
title = {Infinitesimal and global rigidity and inflexibility of~surfaces of revolution with flattening at the poles},
journal = {Sbornik. Mathematics},
pages = {1516--1547},
year = {2013},
volume = {204},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_10_a3/}
}
TY - JOUR AU - I. Kh. Sabitov TI - Infinitesimal and global rigidity and inflexibility of surfaces of revolution with flattening at the poles JO - Sbornik. Mathematics PY - 2013 SP - 1516 EP - 1547 VL - 204 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2013_204_10_a3/ LA - en ID - SM_2013_204_10_a3 ER -
I. Kh. Sabitov. Infinitesimal and global rigidity and inflexibility of surfaces of revolution with flattening at the poles. Sbornik. Mathematics, Tome 204 (2013) no. 10, pp. 1516-1547. http://geodesic.mathdoc.fr/item/SM_2013_204_10_a3/
[1] N. V. Efimov, “Kachestvennye voprosy teorii deformatsii poverkhnostei «v malom»”, Tr. MIAN SSSR, 30, Izd-vo AN SSSR, M.–L., 1949, 3–128 | MR | Zbl
[2] N. V. Efimov, “O zhestkosti v malom”, Dokl. AN SSSR, 60:5 (1948), 761–764 | MR | Zbl
[3] I. Ivanova-Karatopraklieva, I. Kh. Sabitov, “Surface deformation. I”, J. Math. Sci., 70:2 (1994), 1685–1716 | DOI | MR | Zbl | Zbl
[4] S. B. Klimentov, I. Kh. Sabitov, Z. D. Usmanov, “Deformatsiya poverkhnostei “v malom”: ot N. V. Efimova do sovremennykh issledovanii”, Matematika, Vyp. 2, Sovremennye problemy matematiki i mekhaniki, 6, Izd-vo Mosk. un-a, M., 2011, 34–48
[5] I. Kh. Sabitov, “A study of the rigidity and inflexibility of analytic surfaces of revolution with flattening at the pole”, Moscow Univ. Math. Bull., 41:5 (1986), 33–41 | MR | Zbl
[6] I. Ivanova-Karatopraklieva, I. Kh. Sabitov, “Second-order infinitesimal bendings of surfaces of rotation with densification at a pole”, Math. Notes, 45:1 (1989), 19–24 | MR | Zbl
[7] S. E. Chon-Vossen, “Unstarre geschlossene Flächen”, Math. Ann., 102:1 (1930), 10–29 | DOI | MR | MR
[8] N. V. Efimov, “Nekotorye predlozheniya o zhëstkosti i neizgibaemosti”, UMN, 7:5(51) (1952), 215–224 | MR | Zbl
[9] I. Kh. Sabitov, “Local theory of bendings of surfaces”, Geometry, v. III, Encyclopaedia Math. Sci., 48, Springer-Verlag, Berlin, 1992, 179–250 | DOI | MR | MR | Zbl | Zbl
[10] I. Kh. Sabitov, “On the relations between infinitesimal bendings of different orders”, J. Math. Sci., 72:4 (1994), 3237–3241 | DOI | MR | Zbl | Zbl
[11] R. Connelly, H. Servatius, “Higher-order rigidity – What is the proper definition?”, Discrete Comput. Geom., 11:1 (1994), 193–200 | DOI | MR | Zbl
[12] I. Kh. Sabitov, “The rigidity of “corrugated” surfaces of revolution”, Math. Notes, 14:4 (1973), 854–857 | DOI | MR | Zbl | Zbl
[13] I. Kh. Sabitov, “Possible generalizations of the Minagawa–Rado lemma on the rigidity of a surface of revolution with a fixed parallel”, Math. Notes, 19:1 (1976), 74–79 | DOI | MR | Zbl | Zbl
[14] A. V. Pogorelov, Extrinsic geometry of convex surfaces, Transl. Math. Monogr., 35, Amer. Math. Soc., Providence, R.I., 1973 | MR | MR | Zbl | Zbl
[15] J. L. Kazdan, F. W. Warner, “Curvature functions for open 2-manifolds”, Ann. of Math. (2), 99 (1974), 203–219 | DOI | MR | Zbl | Zbl
[16] A. O. Gel'fond, Solving equations in integers, Mir, Moscow, 1981 | MR | MR | Zbl | Zbl
[17] T. Nagell, Introduction to number theory, Wiley, New York, 1951 | MR | Zbl
[18] A. Yu. Nesterenko, “Determination of integer solutions of a system of simultaneous Pell equations”, Math. Notes, 86:4 (2009), 556–566 | DOI | DOI | MR | Zbl
[19] A. D. Milka, “O tochkakh otnositelnoi nezhestkosti vypukloi poverkhnosti vrascheniya”, Ukr. geom. sb., 1 (1965), 65–74 | MR | Zbl
[20] N. V. Efimov, “Kachestvennye voprosy teorii deformatsii poverkhnostei”, UMN, 3:2 (1948), 47–158 | MR | Zbl
[21] I. H. Sabitov, “On infinitesimal bendings of troughs of revolution. I”, Math. USSR-Sb., 27:1 (1975), 103–117 | DOI | MR | Zbl | Zbl
[22] I. H. Sabitov, “On infinitesimal bendings of troughs of revolution. II”, Math. USSR-Sb., 28:1 (1976), 41–48 | DOI | MR | Zbl | Zbl