Mots-clés : clique
@article{SM_2013_204_10_a1,
author = {A. B. Kupavskii and A. M. Raigorodskii},
title = {Obstructions to the realization of distance graphs with large chromatic numbers on spheres of small radii},
journal = {Sbornik. Mathematics},
pages = {1435--1479},
year = {2013},
volume = {204},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_10_a1/}
}
TY - JOUR AU - A. B. Kupavskii AU - A. M. Raigorodskii TI - Obstructions to the realization of distance graphs with large chromatic numbers on spheres of small radii JO - Sbornik. Mathematics PY - 2013 SP - 1435 EP - 1479 VL - 204 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2013_204_10_a1/ LA - en ID - SM_2013_204_10_a1 ER -
%0 Journal Article %A A. B. Kupavskii %A A. M. Raigorodskii %T Obstructions to the realization of distance graphs with large chromatic numbers on spheres of small radii %J Sbornik. Mathematics %D 2013 %P 1435-1479 %V 204 %N 10 %U http://geodesic.mathdoc.fr/item/SM_2013_204_10_a1/ %G en %F SM_2013_204_10_a1
A. B. Kupavskii; A. M. Raigorodskii. Obstructions to the realization of distance graphs with large chromatic numbers on spheres of small radii. Sbornik. Mathematics, Tome 204 (2013) no. 10, pp. 1435-1479. http://geodesic.mathdoc.fr/item/SM_2013_204_10_a1/
[1] P. Brass, W. Moser, J. Pach, Research problems in discrete geometry, Springer-Verlag, New York, 2005 | MR | Zbl
[2] A. Soifer, The mathematical coloring book, Springer-Verlag, New York, 2009 | MR | Zbl
[3] A. Soifer, “Khromaticheskoe chislo ploskosti: ego proshloe, nastoyaschee i buduschee”, Matem. prosveschenie, 2004, no. 8, 186–221
[4] H. Hadwiger, “Ein Überdeckungssatz für den Euklidischen Raum”, Portugaliae Math., 4 (1944), 140–144 | MR | Zbl
[5] F. Harary, Graph theory, Addison-Wesly, Reading, MA, 1969 | MR | MR | Zbl | Zbl
[6] A. M. Raigorodskii, “Borsuk's problem and the chromatic numbers of some metric spaces”, Russian Math. Surveys, 56:1 (2001), 103–139 | DOI | DOI | MR | Zbl
[7] A. M. Raigorodskii, Khromaticheskie chisla, MTsNMO, M., 2003
[8] A. M. Raigorodskii, Lineino-algebraicheskii metod v kombinatorike, MTsNMO, Moskva, 2007
[9] A. M. Raigorodskii, “Coloring distance graphs and graphs of diameters”, Thirty essays on geometric graph theory, Lecture Notes in Math., Springer-Verlag, New York, 2013, 429–460 | DOI
[10] P. K. Agarwal, J. Pach, Combinatorial geometry, Wiley-Intersci. Ser. Discrete Math. Optim., John Wiley and Sons Inc., New York, 1995 | MR | Zbl
[11] V. Klee, S. Wagon, Old and new unsolved problems in plane geometry and number theory, Dolciani Math. Exp., 11, Math. Association of America, Washington, 1991 | MR | Zbl
[12] L. A. Székely, “Erdős on unit distances and the Szemerédi–Trotter theorems”, Paul Erdős and his mathematics (Budapest, Hungary, 1999), v. II, Bolyai Soc. Math. Stud., 11, Springer-Verlag, Berlin, 2002, 649–666 | MR | Zbl
[13] A. M. Raigorodskii, “On the chromatic number of a space”, Russian Math. Surveys, 55:2 (2000), 351–352 | DOI | DOI | MR | Zbl
[14] D. G. Larman, C. A. Rogers, “The realization of distances within sets in Euclidean space”, Mathematika, 19 (1972), 1–24 | MR | Zbl
[15] P. Frankl, R. M. Wilson, “Intersection theorems with geometric consequences”, Combinatorica, 1:4 (1981), 357–368 | DOI | MR | Zbl
[16] A. M. Raigorodskii, “The Erdös–Hadwiger problem and the chromatic numbers of finite geometric graphs”, Sb. Math., 196:1 (2005), 115–146 | DOI | DOI | MR | Zbl
[17] A. M. Raigorodskii, “The problems of Borsuk and Grünbaum on lattice polytopes”, Izv. Math., 69:3 (2005), 513–537 | DOI | DOI | MR | Zbl
[18] E. S. Gorskaya, I. M. Mitricheva, V. Yu. Protasov, A. M. Raigorodskii, “The problems of Borsuk and Grünbaum on lattice polytopes”, Sb. Math., 200:6 (2009), 783–801 | DOI | DOI | MR | Zbl
[19] P. Erdős, R. L. Graham, Problem proposed at the 6th Hungarian combinatorial conference, Eger, July 1981
[20] L. Lovaśz, “Self-dual polytopes and the chromatic number of distance graphs on the sphere”, Acta Sci. Math. (Szeged), 45:1–4 (1983), 317–323 | MR | Zbl
[21] J. Matoušek, Using the Borsuk–Ulam theorem, Universitext, Springer-Verlag, Berlin, 2003 | MR | Zbl
[22] A. M. Raigorodskii, “On the chromatic numbers of spheres in Euclidean spaces”, Dokl. Math., 81:3 (2010), 379–382 | DOI | MR | Zbl
[23] A. M. Raigorodskii, “On the chromatic numbers of spheres in $ {\mathbb R}^n $”, Combinbatorica, 32:1 (2012), 111–123 | DOI | MR | Zbl
[24] E. E. Demekhin, A. M. Raigorodskii, O. I. Rubanov, “Distance graphs having large chromatic numbers and containing no cliques or cycles of a given size”, Sb. Math., 204:4 (2013), 508–538 | DOI | DOI | Zbl
[25] A. M. Raigorodskii, “On distance graphs with large chromatic number but without large simplices”, Russian Math. Surveys, 62:6 (2007), 1224–1225 | DOI | DOI | MR | Zbl
[26] A. M. Raigorodskii, O. I. Rubanov, “On the clique and the chromatic numbers of high-dimensional distance graphs”, Number theory and applications (Allahabad, India, 2007), Hindustan Book Agency, New Delhi, 2009, 149–157 | MR | Zbl
[27] A. M. Raigorodskii, O. I. Rubanov, “Distance graphs with large chromatic number and without large cliques”, Math. Notes, 87:3 (2010), 392–402 | DOI | DOI | MR | Zbl
[28] P. Frankl, V. Rödl, “Forbidden intersections”, Trans. Amer. Math. Soc., 300:1 (1987), 259–286 | DOI | MR | Zbl
[29] R. C. Baker, G. Harman, J. Pintz, “The difference between consecutive primes, II”, Proc. London Math. Soc. (3), 83:3 (2001), 532–562 | DOI | MR | Zbl