The inverse problem of recovering the source in a~parabolic equation under a~condition of nonlocal observation
Sbornik. Mathematics, Tome 204 (2013) no. 10, pp. 1391-1434
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the inverse problem for a parabolic equation of recovering the source, that is, the right-hand side $F(x,t)=h(x,t)f(x)$, where the function $f(x)$ is unknown. To find $f(x)$, along with the initial and boundary conditions, we
also introduce an additional condition of nonlocal observation of the form $\displaystyle\int_{0}^{T}u(x,t)\,d\mu(t)=\chi(x)$. We prove the Fredholm property for the problem stated in this way, and obtain sufficient conditions for the existence and uniqueness of a solution. These conditions are of the form of readily verifiable inequalities and put no restrictions on the value of $T>0$ or the diameter of the domain $\Omega$ under consideration. The proof uses a priori estimates and the qualitative properties of solutions of initial-boundary value problems for parabolic equations.
Bibliography: 40 titles.
Keywords:
inverse problems, nonlocal overdetermination.
Mots-clés : parabolic equations
Mots-clés : parabolic equations
@article{SM_2013_204_10_a0,
author = {A. B. Kostin},
title = {The inverse problem of recovering the source in a~parabolic equation under a~condition of nonlocal observation},
journal = {Sbornik. Mathematics},
pages = {1391--1434},
publisher = {mathdoc},
volume = {204},
number = {10},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2013_204_10_a0/}
}
TY - JOUR AU - A. B. Kostin TI - The inverse problem of recovering the source in a~parabolic equation under a~condition of nonlocal observation JO - Sbornik. Mathematics PY - 2013 SP - 1391 EP - 1434 VL - 204 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2013_204_10_a0/ LA - en ID - SM_2013_204_10_a0 ER -
A. B. Kostin. The inverse problem of recovering the source in a~parabolic equation under a~condition of nonlocal observation. Sbornik. Mathematics, Tome 204 (2013) no. 10, pp. 1391-1434. http://geodesic.mathdoc.fr/item/SM_2013_204_10_a0/