Arrangements of codimension-one submanifolds
Sbornik. Mathematics, Tome 203 (2012) no. 9, pp. 1357-1382

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the number $f$ of connected components in the complement to a finite set (arrangement) of closed submanifolds of codimension 1 in a closed manifold $M$. In the case of arrangements of closed geodesics on an isohedral tetrahedron, we find all possible values for the number $f$ of connected components. We prove that the set of numbers that cannot be realized by the number $f$ of an arrangement of $n\geqslant 71$ projective planes in the three-dimensional real projective space is contained in the similar known set of numbers that are not realizable by arrangements of $n$ lines on the projective plane. For Riemannian surfaces $M$ we express the number $f$ via a regular neighbourhood of a union of immersed circles and the multiplicities of their intersection points. For $m$-dimensional Lobachevskiǐ space we find the set of all possible numbers $f$ for hyperplane arrangements. Bibliography: 18 titles.
Keywords: hyperplane arrangements, closed geodesics
Mots-clés : partition of a surface.
@article{SM_2012_203_9_a6,
     author = {I. N. Shnurnikov},
     title = {Arrangements of codimension-one submanifolds},
     journal = {Sbornik. Mathematics},
     pages = {1357--1382},
     publisher = {mathdoc},
     volume = {203},
     number = {9},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_9_a6/}
}
TY  - JOUR
AU  - I. N. Shnurnikov
TI  - Arrangements of codimension-one submanifolds
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1357
EP  - 1382
VL  - 203
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_9_a6/
LA  - en
ID  - SM_2012_203_9_a6
ER  - 
%0 Journal Article
%A I. N. Shnurnikov
%T Arrangements of codimension-one submanifolds
%J Sbornik. Mathematics
%D 2012
%P 1357-1382
%V 203
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_9_a6/
%G en
%F SM_2012_203_9_a6
I. N. Shnurnikov. Arrangements of codimension-one submanifolds. Sbornik. Mathematics, Tome 203 (2012) no. 9, pp. 1357-1382. http://geodesic.mathdoc.fr/item/SM_2012_203_9_a6/