@article{SM_2012_203_9_a4,
author = {L. N. Romakina},
title = {Simple partitions of a~hyperbolic plane of positive curvature},
journal = {Sbornik. Mathematics},
pages = {1310--1341},
year = {2012},
volume = {203},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_9_a4/}
}
L. N. Romakina. Simple partitions of a hyperbolic plane of positive curvature. Sbornik. Mathematics, Tome 203 (2012) no. 9, pp. 1310-1341. http://geodesic.mathdoc.fr/item/SM_2012_203_9_a4/
[1] H. S. M. Coxeter, W. O. J. Moser, Generators and relations for discrete groups, Springer-Verlag, New York–Heidelberg, 1972 | MR | MR | Zbl | Zbl
[2] Eh. B. Vinberg, O. V. Shvartsman, “Discrete groups of motions of spaces of constant curvature”, Geometry. II: Spaces of constant curvature, Encyclopaedia Math. Sci., 29, Springer-Verlag, Berlin, 1993, 139–248 | MR | Zbl | Zbl
[3] N. P. Dolbilin, V. S. Makarov, “Extension theorem in the theory of isohedral tilings and its applications”, Proc. Steklov Inst. Math., 239 (2002), 136–158 | MR | Zbl
[4] V. S. Makarov, “Geometric methods of constructing discrete groups of motions of Lobachevskii space”, J. Soviet Math., 29:5 (1985), 1519–1550 | DOI | MR | Zbl | Zbl
[5] V. S. Makarov, “Kelvin decompositions of three-dimensional Lobachevskii space by regular polyhedra”, Russian Math. Surveys, 45:1 (1990), 216–217 | DOI | MR | Zbl
[6] V. S. Makarov, “On a nonregular partitioning of $n$-dimensional Lobachevskij space by congruent polytopes”, Proc. Steklov Inst. Math., 196 (1992), 103–106 | MR | Zbl | Zbl
[7] B. A. Rozenfeld, M. P. Zamakhovskii, Geometriya grupp Li. Simmetricheskie, parabolicheskie i periodicheskie prostranstva, MTsNMO, M., 2003 | MR | Zbl
[8] B. A. Rozenfeld, Neevklidovy prostranstva, Nauka, M., 1969 | MR | Zbl
[9] L. N. Romakina, “Konechnye zamknutye 3(4)-kontury rasshirennoi giperbolicheskoi ploskosti”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 10:3 (2010), 14–26
[10] L. N. Romakina, “Razbieniya giperbolicheskoi ploskosti polozhitelnoi krivizny, porozhdennye pravilnym $n$-konturom”, Teoriya otnositelnosti, gravitatsiya i geometriya, Trudy mezhd. konf. “Petrov 2010 Anniversary Sympozium on General Relativity and Gravitation” (Kazan, 2010), Kazan. un-t, Kazan, 2010, 227–232
[11] L. N. Romakina, “Prostye razbieniya giperbolicheskoi ploskosti polozhitelnoi krivizny, porozhdennye $h$-lomanoi”, Sovremennye problemy matematiki i mekhaniki, 6, no. 3, Izd-vo Mosk. un-ta, M., 2011, 131–138
[12] L. N. Romakina, “Invariant gruppy simmetrii ekvidistanty rasshirennoi giperbolicheskoi ploskosti”, Sb. nauch. tr. Mekhanika. Matematika, Izd-vo Sarat. un-ta, Saratov, 2009, 58–60
[13] L. N. Romakina, “K voprosu izlozheniya giperbolicheskoi geometrii v ramkakh distsipliny spetsializatsii”, Uchitel – uchenik: problemy, poiski, nakhodki, Sb. nauchno-metod. trudov, v. 8, Nauka, Saratov, 2010, 52–60
[14] L. N. Romakina, Geometrii koevklidovoi i kopsevdoevklidovoi ploskostei, Nauchnaya kniga, Saratov, 2008