Simple partitions of a hyperbolic plane of positive curvature
Sbornik. Mathematics, Tome 203 (2012) no. 9, pp. 1310-1341 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct special monohedral isotropic partitions with symmetries of the hyperbolic plane $\widehat H$ of positive curvature with a simple 4-contour as a cell. An analogue of mosaic in these partitions called a tiling is introduced. Also we consider some fractal tilings. The existence of band tilings in each homological series with code $(m, n)$ is proved. Bibliography: 14 titles.
Keywords: hyperbolic plane of positive curvature, tiling, band tiling, simple tiled and almost tiled partition of the plane $\widehat H$.
@article{SM_2012_203_9_a4,
     author = {L. N. Romakina},
     title = {Simple partitions of a~hyperbolic plane of positive curvature},
     journal = {Sbornik. Mathematics},
     pages = {1310--1341},
     year = {2012},
     volume = {203},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_9_a4/}
}
TY  - JOUR
AU  - L. N. Romakina
TI  - Simple partitions of a hyperbolic plane of positive curvature
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1310
EP  - 1341
VL  - 203
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_9_a4/
LA  - en
ID  - SM_2012_203_9_a4
ER  - 
%0 Journal Article
%A L. N. Romakina
%T Simple partitions of a hyperbolic plane of positive curvature
%J Sbornik. Mathematics
%D 2012
%P 1310-1341
%V 203
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2012_203_9_a4/
%G en
%F SM_2012_203_9_a4
L. N. Romakina. Simple partitions of a hyperbolic plane of positive curvature. Sbornik. Mathematics, Tome 203 (2012) no. 9, pp. 1310-1341. http://geodesic.mathdoc.fr/item/SM_2012_203_9_a4/

[1] H. S. M. Coxeter, W. O. J. Moser, Generators and relations for discrete groups, Springer-Verlag, New York–Heidelberg, 1972 | MR | MR | Zbl | Zbl

[2] Eh. B. Vinberg, O. V. Shvartsman, “Discrete groups of motions of spaces of constant curvature”, Geometry. II: Spaces of constant curvature, Encyclopaedia Math. Sci., 29, Springer-Verlag, Berlin, 1993, 139–248 | MR | Zbl | Zbl

[3] N. P. Dolbilin, V. S. Makarov, “Extension theorem in the theory of isohedral tilings and its applications”, Proc. Steklov Inst. Math., 239 (2002), 136–158 | MR | Zbl

[4] V. S. Makarov, “Geometric methods of constructing discrete groups of motions of Lobachevskii space”, J. Soviet Math., 29:5 (1985), 1519–1550 | DOI | MR | Zbl | Zbl

[5] V. S. Makarov, “Kelvin decompositions of three-dimensional Lobachevskii space by regular polyhedra”, Russian Math. Surveys, 45:1 (1990), 216–217 | DOI | MR | Zbl

[6] V. S. Makarov, “On a nonregular partitioning of $n$-dimensional Lobachevskij space by congruent polytopes”, Proc. Steklov Inst. Math., 196 (1992), 103–106 | MR | Zbl | Zbl

[7] B. A. Rozenfeld, M. P. Zamakhovskii, Geometriya grupp Li. Simmetricheskie, parabolicheskie i periodicheskie prostranstva, MTsNMO, M., 2003 | MR | Zbl

[8] B. A. Rozenfeld, Neevklidovy prostranstva, Nauka, M., 1969 | MR | Zbl

[9] L. N. Romakina, “Konechnye zamknutye 3(4)-kontury rasshirennoi giperbolicheskoi ploskosti”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 10:3 (2010), 14–26

[10] L. N. Romakina, “Razbieniya giperbolicheskoi ploskosti polozhitelnoi krivizny, porozhdennye pravilnym $n$-konturom”, Teoriya otnositelnosti, gravitatsiya i geometriya, Trudy mezhd. konf. “Petrov 2010 Anniversary Sympozium on General Relativity and Gravitation” (Kazan, 2010), Kazan. un-t, Kazan, 2010, 227–232

[11] L. N. Romakina, “Prostye razbieniya giperbolicheskoi ploskosti polozhitelnoi krivizny, porozhdennye $h$-lomanoi”, Sovremennye problemy matematiki i mekhaniki, 6, no. 3, Izd-vo Mosk. un-ta, M., 2011, 131–138

[12] L. N. Romakina, “Invariant gruppy simmetrii ekvidistanty rasshirennoi giperbolicheskoi ploskosti”, Sb. nauch. tr. Mekhanika. Matematika, Izd-vo Sarat. un-ta, Saratov, 2009, 58–60

[13] L. N. Romakina, “K voprosu izlozheniya giperbolicheskoi geometrii v ramkakh distsipliny spetsializatsii”, Uchitel – uchenik: problemy, poiski, nakhodki, Sb. nauchno-metod. trudov, v. 8, Nauka, Saratov, 2010, 52–60

[14] L. N. Romakina, Geometrii koevklidovoi i kopsevdoevklidovoi ploskostei, Nauchnaya kniga, Saratov, 2008