Simple partitions of a~hyperbolic plane of positive curvature
Sbornik. Mathematics, Tome 203 (2012) no. 9, pp. 1310-1341

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct special monohedral isotropic partitions with symmetries of the hyperbolic plane $\widehat H$ of positive curvature with a simple 4-contour as a cell. An analogue of mosaic in these partitions called a tiling is introduced. Also we consider some fractal tilings. The existence of band tilings in each homological series with code $(m, n)$ is proved. Bibliography: 14 titles.
Keywords: hyperbolic plane of positive curvature, tiling, band tiling, simple tiled and almost tiled partition of the plane $\widehat H$.
@article{SM_2012_203_9_a4,
     author = {L. N. Romakina},
     title = {Simple partitions of a~hyperbolic plane of positive curvature},
     journal = {Sbornik. Mathematics},
     pages = {1310--1341},
     publisher = {mathdoc},
     volume = {203},
     number = {9},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_9_a4/}
}
TY  - JOUR
AU  - L. N. Romakina
TI  - Simple partitions of a~hyperbolic plane of positive curvature
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1310
EP  - 1341
VL  - 203
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_9_a4/
LA  - en
ID  - SM_2012_203_9_a4
ER  - 
%0 Journal Article
%A L. N. Romakina
%T Simple partitions of a~hyperbolic plane of positive curvature
%J Sbornik. Mathematics
%D 2012
%P 1310-1341
%V 203
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_9_a4/
%G en
%F SM_2012_203_9_a4
L. N. Romakina. Simple partitions of a~hyperbolic plane of positive curvature. Sbornik. Mathematics, Tome 203 (2012) no. 9, pp. 1310-1341. http://geodesic.mathdoc.fr/item/SM_2012_203_9_a4/