Mots-clés : cube convergence, Cantor-Lebesgue theorem.
@article{SM_2012_203_9_a3,
author = {M. G. Plotnikov},
title = {Coefficients of convergent multiple {Walsh-Paley} series},
journal = {Sbornik. Mathematics},
pages = {1295--1309},
year = {2012},
volume = {203},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_9_a3/}
}
M. G. Plotnikov. Coefficients of convergent multiple Walsh-Paley series. Sbornik. Mathematics, Tome 203 (2012) no. 9, pp. 1295-1309. http://geodesic.mathdoc.fr/item/SM_2012_203_9_a3/
[1] N. K. Bary, A treatise on trigonometric series, Macmillan, New York, 1964 | MR | MR | Zbl
[2] J. M. Ash, G. V. Welland, “Convergence, uniqueness, and summability of multiple trigonometric series”, Trans. Amer. Math. Soc., 163:2 (1972), 401–436 | DOI | MR | Zbl
[3] G. E. Reves, O. Szász, “Some theorems on double trigonometric series”, Duke Math. J., 9:4 (1942), 693–705 | DOI | MR | Zbl
[4] P. J. Cohen, Topics in the theory of uniqueness of trigonometrical series, Thesis, University of Chicago, Chicago, Il, 1958 | MR
[5] J. M. Ash, G. Wang, “One and two-dimensional Cantor–Lebesgue type theorems”, Trans. Amer. Math. Soc., 349:4 (1997), 1663–1674 | DOI | MR | Zbl
[6] V. A. Skvortsov, “On the coefficients of convergent multiple Haar and Walsh series”, Moscow Univ. Math. Bull., 28:6 (1973), 119–121 | MR | Zbl | Zbl
[7] M. G. Plotnikov, “Recovery of the coefficients of multiple Haar and Walsh series”, Real Anal. Exchange, 33:2 (2008), 291–308 | MR | Zbl
[8] Sh. T. Tetunashvili, “On some multiple function series and the solution of the uniqueness problem for Pringsheim convergence of multiple trigonometric series”, Math. USSR-Sb., 73:2 (1992), 517–534 | DOI | MR | Zbl | Zbl
[9] L. D. Gogoladze, “On the problem of reconstructing the coefficients of convergent multiple function series”, Izv. Math., 72:2 (2008), 283–290 | DOI | MR | Zbl
[10] M. G. Plotnikov, “Coefficients of convergent multiple Haar series”, Russian Math. (Iz. VUZ), 56:1 (2012), 61–65 | DOI | MR
[11] N. Ya. Vilenkin, “On a class of complete orthonormal systems”, Amer. Math. Soc. Transl. (2), 28 (1963), 1–35 | MR | MR | Zbl
[12] N. J. Fine, “On the Walsh functions”, Trans. Amer. Math. Soc., 65:3 (1949), 372–414 | DOI | MR | Zbl
[13] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, ELM, Baku, 1981 | MR | Zbl
[14] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl
[15] F. Schipp, W. R. Wade, P. Simon, Walsh series. An introduction to dyadic harmonic analysis, Academiai Kiado, Budapest, 1990 | MR | Zbl
[16] L. V. Zhizhiashvili, “Some problems in the theory of simple and multiple trigonometric and orthogonal series”, Russian Math. Surveys, 28:2 (1973), 65–127 | DOI | MR | Zbl | Zbl
[17] S. Saks, Theory of the integral, Dover Publ., New York, 1937 | MR | Zbl
[18] M. G. Plotnikov, “Quasi-measures on the group $G^m$, Dirichlet sets, and uniqueness problems for multiple Walsh series”, Sb. Math., 201:12 (2010), 1837–1862 | DOI | MR | Zbl