Coefficients of convergent multiple Walsh-Paley series
Sbornik. Mathematics, Tome 203 (2012) no. 9, pp. 1295-1309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the behaviour of the coefficients of multiple Walsh-Paley series that are cube convergent to a finite sum. It is shown that even an everywhere convergent series of this kind may contain coefficients with numbers from a sufficiently large set that grow faster than any preassigned sequence. By Cohen's theorem, this sort of thing cannot happen for multiple trigonometric series that are cube convergent on a set of full measure — their coefficients cannot grow even exponentially. Null subsequences of coefficients are determined for multiple Walsh-Paley series that are cube convergent on a set of definite measure. Bibliography: 18 titles.
Keywords: multiple Walsh-Paley series
Mots-clés : cube convergence, Cantor-Lebesgue theorem.
@article{SM_2012_203_9_a3,
     author = {M. G. Plotnikov},
     title = {Coefficients of convergent multiple {Walsh-Paley} series},
     journal = {Sbornik. Mathematics},
     pages = {1295--1309},
     year = {2012},
     volume = {203},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_9_a3/}
}
TY  - JOUR
AU  - M. G. Plotnikov
TI  - Coefficients of convergent multiple Walsh-Paley series
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1295
EP  - 1309
VL  - 203
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_9_a3/
LA  - en
ID  - SM_2012_203_9_a3
ER  - 
%0 Journal Article
%A M. G. Plotnikov
%T Coefficients of convergent multiple Walsh-Paley series
%J Sbornik. Mathematics
%D 2012
%P 1295-1309
%V 203
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2012_203_9_a3/
%G en
%F SM_2012_203_9_a3
M. G. Plotnikov. Coefficients of convergent multiple Walsh-Paley series. Sbornik. Mathematics, Tome 203 (2012) no. 9, pp. 1295-1309. http://geodesic.mathdoc.fr/item/SM_2012_203_9_a3/

[1] N. K. Bary, A treatise on trigonometric series, Macmillan, New York, 1964 | MR | MR | Zbl

[2] J. M. Ash, G. V. Welland, “Convergence, uniqueness, and summability of multiple trigonometric series”, Trans. Amer. Math. Soc., 163:2 (1972), 401–436 | DOI | MR | Zbl

[3] G. E. Reves, O. Szász, “Some theorems on double trigonometric series”, Duke Math. J., 9:4 (1942), 693–705 | DOI | MR | Zbl

[4] P. J. Cohen, Topics in the theory of uniqueness of trigonometrical series, Thesis, University of Chicago, Chicago, Il, 1958 | MR

[5] J. M. Ash, G. Wang, “One and two-dimensional Cantor–Lebesgue type theorems”, Trans. Amer. Math. Soc., 349:4 (1997), 1663–1674 | DOI | MR | Zbl

[6] V. A. Skvortsov, “On the coefficients of convergent multiple Haar and Walsh series”, Moscow Univ. Math. Bull., 28:6 (1973), 119–121 | MR | Zbl | Zbl

[7] M. G. Plotnikov, “Recovery of the coefficients of multiple Haar and Walsh series”, Real Anal. Exchange, 33:2 (2008), 291–308 | MR | Zbl

[8] Sh. T. Tetunashvili, “On some multiple function series and the solution of the uniqueness problem for Pringsheim convergence of multiple trigonometric series”, Math. USSR-Sb., 73:2 (1992), 517–534 | DOI | MR | Zbl | Zbl

[9] L. D. Gogoladze, “On the problem of reconstructing the coefficients of convergent multiple function series”, Izv. Math., 72:2 (2008), 283–290 | DOI | MR | Zbl

[10] M. G. Plotnikov, “Coefficients of convergent multiple Haar series”, Russian Math. (Iz. VUZ), 56:1 (2012), 61–65 | DOI | MR

[11] N. Ya. Vilenkin, “On a class of complete orthonormal systems”, Amer. Math. Soc. Transl. (2), 28 (1963), 1–35 | MR | MR | Zbl

[12] N. J. Fine, “On the Walsh functions”, Trans. Amer. Math. Soc., 65:3 (1949), 372–414 | DOI | MR | Zbl

[13] G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli, A. I. Rubinshtein, Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, ELM, Baku, 1981 | MR | Zbl

[14] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl

[15] F. Schipp, W. R. Wade, P. Simon, Walsh series. An introduction to dyadic harmonic analysis, Academiai Kiado, Budapest, 1990 | MR | Zbl

[16] L. V. Zhizhiashvili, “Some problems in the theory of simple and multiple trigonometric and orthogonal series”, Russian Math. Surveys, 28:2 (1973), 65–127 | DOI | MR | Zbl | Zbl

[17] S. Saks, Theory of the integral, Dover Publ., New York, 1937 | MR | Zbl

[18] M. G. Plotnikov, “Quasi-measures on the group $G^m$, Dirichlet sets, and uniqueness problems for multiple Walsh series”, Sb. Math., 201:12 (2010), 1837–1862 | DOI | MR | Zbl