Stabilizing a~solution of the 2D Navier-Stokes system in the exterior of a~bounded domain by means of a~control on the boundary
Sbornik. Mathematics, Tome 203 (2012) no. 9, pp. 1244-1268
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of stabilizing a solution of the 2D Navier-Stokes system defined in the exterior of a bounded domain with smooth boundary is investigated. For a given initial velocity field a control on the boundary of the domain must be constructed such that the solution stabilizes to a prescribed vortex solution or trivial solution at the rate of $1/{t^k}$. On the way, related questions are investigated, concerning the behaviour of the spectrum of an operator under a relatively compact perturbation and the existence of attracting invariant manifolds.
Bibliography: 21 titles.
Keywords:
Navier-Stokes system, Lamb-Oseen vortex, stabilization, boundary control, invariant manifolds.
@article{SM_2012_203_9_a1,
author = {A. V. Gorshkov},
title = {Stabilizing a~solution of the {2D} {Navier-Stokes} system in the exterior of a~bounded domain by means of a~control on the boundary},
journal = {Sbornik. Mathematics},
pages = {1244--1268},
publisher = {mathdoc},
volume = {203},
number = {9},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_9_a1/}
}
TY - JOUR AU - A. V. Gorshkov TI - Stabilizing a~solution of the 2D Navier-Stokes system in the exterior of a~bounded domain by means of a~control on the boundary JO - Sbornik. Mathematics PY - 2012 SP - 1244 EP - 1268 VL - 203 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2012_203_9_a1/ LA - en ID - SM_2012_203_9_a1 ER -
%0 Journal Article %A A. V. Gorshkov %T Stabilizing a~solution of the 2D Navier-Stokes system in the exterior of a~bounded domain by means of a~control on the boundary %J Sbornik. Mathematics %D 2012 %P 1244-1268 %V 203 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2012_203_9_a1/ %G en %F SM_2012_203_9_a1
A. V. Gorshkov. Stabilizing a~solution of the 2D Navier-Stokes system in the exterior of a~bounded domain by means of a~control on the boundary. Sbornik. Mathematics, Tome 203 (2012) no. 9, pp. 1244-1268. http://geodesic.mathdoc.fr/item/SM_2012_203_9_a1/