@article{SM_2012_203_9_a1,
author = {A. V. Gorshkov},
title = {Stabilizing a~solution of the {2D} {Navier-Stokes} system in the exterior of a~bounded domain by means of a~control on the boundary},
journal = {Sbornik. Mathematics},
pages = {1244--1268},
year = {2012},
volume = {203},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_9_a1/}
}
TY - JOUR AU - A. V. Gorshkov TI - Stabilizing a solution of the 2D Navier-Stokes system in the exterior of a bounded domain by means of a control on the boundary JO - Sbornik. Mathematics PY - 2012 SP - 1244 EP - 1268 VL - 203 IS - 9 UR - http://geodesic.mathdoc.fr/item/SM_2012_203_9_a1/ LA - en ID - SM_2012_203_9_a1 ER -
%0 Journal Article %A A. V. Gorshkov %T Stabilizing a solution of the 2D Navier-Stokes system in the exterior of a bounded domain by means of a control on the boundary %J Sbornik. Mathematics %D 2012 %P 1244-1268 %V 203 %N 9 %U http://geodesic.mathdoc.fr/item/SM_2012_203_9_a1/ %G en %F SM_2012_203_9_a1
A. V. Gorshkov. Stabilizing a solution of the 2D Navier-Stokes system in the exterior of a bounded domain by means of a control on the boundary. Sbornik. Mathematics, Tome 203 (2012) no. 9, pp. 1244-1268. http://geodesic.mathdoc.fr/item/SM_2012_203_9_a1/
[1] A. Fursikov, “Real process corresponding to the 3D Navier–Stokes system, and its feedback stabilization from the boundary”, Partial differential equations, Amer. Math. Soc. Transl. Ser. 2, 206, Amer. Math. Soc., Providence, RI, 2002, 95–123 | MR | Zbl
[2] A. V. Fursikov, “Stabilizability of two-dimensional Navier–Stokes equations with help of a boundary feedback control”, J. Math. Fluid Mech., 3:3 (2001), 259–301 | DOI | MR | Zbl
[3] A. V. Fursikov, “Stabilizability of a quasi-linear parabolic equation by means of a boundary control with feedback”, Sb. Math., 192:4 (2001), 593–639 | DOI | MR | Zbl
[4] A. V. Gorshkov, “Stabilization of the one-dimensional heat equation on a semibounded rod”, Russian Math. Surveys, 56:2 (2001), 409–410 | DOI | MR | Zbl
[5] A. V. Gorshkov, “Stabilization of a semilinear parabolic equation in the exterior of a bounded domain by means of boundary controls”, Sb. Math., 194:10 (2003), 1475–1502 | DOI | MR | Zbl
[6] Th. Gallay, C. E. Wayne, “Invariant manifolds and the long-time asymptotics of the Navier–Stokes and vorticity equations on $\mathbb{R}^2$”, Arch. Ration. Mech. Anal., 163:3 (2002), 209–258 | DOI | MR | Zbl
[7] Th. Gallay, C. E. Wayne, “Global stability of vortex solutions of the two-dimensional Navier–Stokes equation”, Comm. Math. Phys., 255:1 (2005), 97–129 | DOI | MR | Zbl
[8] S. M. Belotserkovsky, I. K. Lifanov, Method of discrete vortices, CRC Press, Boca Raton, FL, 1993 | MR | MR | Zbl
[9] G.-H. Cottet, P. D. Koumoutsakos, Vortex methods. Theory and practice, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[10] A. V. Gorshkov, “Stabilization of linear parabolic equations defined in an exterior of a bounded domain by a boundary control”, J. Dynam. Control Systems, 10:1 (2004), 1–9 | DOI | MR | Zbl
[11] M. V. Keldysh, “On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators”, Russian Math. Surveys, 26:4 (1971), 15–44 | DOI | MR | Zbl | Zbl
[12] A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, Transl. Math. Monogr., 71, Amer. Math. Soc., Providence, RI, 1988 | MR | MR | Zbl | Zbl
[13] A. S. Markus, V. I. Matsaev, “Comparison theorems for spectra of linear operators, and spectral asymptotics.”, Trans. Moscow Math. Soc., 1984, no. 1, 139–187 | MR | Zbl | Zbl
[14] A. A. Shkalikov, “On the basis property of root vectors of a perturbed self-adjoint operator”, Proc. Steklov Inst. Math., 269 (2010), 284–298 | DOI | MR | Zbl
[15] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer-Verlag, New York, 1985 | MR | MR | Zbl | Zbl
[16] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., 840, Springer-Verlag, Berlin–New York, 1981 | DOI | MR | MR | Zbl | Zbl
[17] L. Hörmander, Linear partial differential operators, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963 | MR | MR | Zbl | Zbl
[18] K. Yosida, Functional analysis, Grundlehren Math. Wiss., 123, Springer-Verlag, Berlin–Göttingen–Heidelberg; Academic Press, New York, 1965 | MR | MR | Zbl | Zbl
[19] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 ; I. C. Gohberg, M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl
[20] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | MR | Zbl | Zbl
[21] A. V. Babin, M. I. Vishik, Attractors of evolution equations, Stud. Math. Appl., 25, North-Holland, Amsterdam, 1992 | MR | MR | Zbl | Zbl