@article{SM_2012_203_8_a4,
author = {T. A. Mel'nik and A. V. Popov},
title = {Asymptotic analysis of boundary value and spectral problems in thin perforated regions with rapidly changing thickness and different limiting dimensions},
journal = {Sbornik. Mathematics},
pages = {1169--1195},
year = {2012},
volume = {203},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_8_a4/}
}
TY - JOUR AU - T. A. Mel'nik AU - A. V. Popov TI - Asymptotic analysis of boundary value and spectral problems in thin perforated regions with rapidly changing thickness and different limiting dimensions JO - Sbornik. Mathematics PY - 2012 SP - 1169 EP - 1195 VL - 203 IS - 8 UR - http://geodesic.mathdoc.fr/item/SM_2012_203_8_a4/ LA - en ID - SM_2012_203_8_a4 ER -
%0 Journal Article %A T. A. Mel'nik %A A. V. Popov %T Asymptotic analysis of boundary value and spectral problems in thin perforated regions with rapidly changing thickness and different limiting dimensions %J Sbornik. Mathematics %D 2012 %P 1169-1195 %V 203 %N 8 %U http://geodesic.mathdoc.fr/item/SM_2012_203_8_a4/ %G en %F SM_2012_203_8_a4
T. A. Mel'nik; A. V. Popov. Asymptotic analysis of boundary value and spectral problems in thin perforated regions with rapidly changing thickness and different limiting dimensions. Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1169-1195. http://geodesic.mathdoc.fr/item/SM_2012_203_8_a4/
[1] A. L. Gol'denveizer, “Derivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity”, J. Appl. Math. Mech., 26:4 (1962), 1000–1025 | DOI | MR | Zbl
[2] A. L. Gol'denveizer, Theory of elastic thin shells, Pergamon Press, Oxford–London–New York–Paris, 1961 | MR | MR | Zbl
[3] M. G. Dzhavadov, “Asimptotika resheniya kraevoi zadachi dlya ellipticheskikh uravnenii vtorogo poryadka v tonkikh oblastyakh”, Differents. uravneniya, 4:10 (1968), 1901–1909 | MR | Zbl
[4] S. A. Nazarov, “Struktura reshenii kraevoi zadachi dlya ellipticheskikh uravnenii v tonkikh oblastyakh”, Vestn. LGU. Ser. matem., mekh., astron., 1982, no. 2, 65–68 | MR | Zbl
[5] S. N. Leora, S. A. Nazarov, A. V. Proskura, “Derivation of limiting equations for elliptic problems in thin domains using computers”, U.S.S.R. Comput. Math. Math. Phys., 26:4 (1986), 47–58 | DOI | MR | Zbl | Zbl
[6] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR | Zbl
[7] D. Caillerie, “Thin elastic and periodic plates”, Math. Methods Appl. Sci., 6:2 (1984), 159–191 | DOI | MR | Zbl
[8] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl
[9] G. P. Panasenko, M. V. Reztsov, “Averaging a three-dimensional problem of elasticity theory in an inhomogeneous plate”, Soviet Math. Dokl., 35:3 (1987), 630–634 | MR | Zbl
[10] T. A. Melnik, “Oserednenie ellipticheskikh uravnenii, opisyvayuschikh protsessy v silno neodnorodnykh tonkikh perforovannykh oblastyakh s bystro izmenyayuscheisya tolschinoi”, Dokl. AN USSR, 10 (1991), 15–18 | MR
[11] R. V. Korn , M. Vogelius, “A new model for thin plates with rapidly varying thickness. II. A convergence proof”, Quart. Appl. Math., 43:1 (1985), 1–22 | MR | Zbl
[12] A. G. Kolpakov, “The governing equations of a thin elastic stressed beam with a periodic structure”, J. Appl. Math. Mech., 63:3 (1999), 495–504 | DOI | MR | Zbl
[13] G. A. Chechkin, E. A. Pichugina, “Weighted Korn's inequality for a thin plate with a rough surface”, Russ. J. Math. Phys., 7:3 (2000), 279–287 | MR | Zbl
[14] T. A. Mel'nik, A. V. Popov, “Asymptotic approximations of solutions to parabolic boundary value problems in thin perforated domains of rapidly varying thickness”, J. Math. Sci. (N. Y.), 162:3 (2009), 348–372 | DOI | MR
[15] S. A. Nazarov, “General averaging procedure for selfadjoint elliptic systems in many-dimensional domains, including thin ones”, St. Petersburg Math. J., 7:5 (1996), 681–748 | MR | Zbl
[16] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002
[17] O. A. Ole'inik, A. S. Shamaev, G. A. Yosifyan, Mathematical problems in elasticity and homogenization, Stud. Math. Appl., 26, North-Holland, Amsterdam, 1992 | MR | MR | Zbl | Zbl
[18] N. S. Bakhvalov, G. Panasenko, Homogenisation: Averaging processes in periodic media, Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989 | MR | MR | Zbl | Zbl
[19] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl
[20] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer–Verlag, New York, 1985 | MR | MR | Zbl | Zbl
[21] T. A. Mel'nik, “Asymptotic expansions of eigenvalues and eigenfunctions for elliptic boundary-value problems with rapidly oscillating coefficients in a perforated cube”, J. Math. Sci., 75:3 (1995), 1646–1671 | DOI | MR | MR | Zbl