Asymptotic analysis of boundary value and spectral problems in thin perforated regions with rapidly changing thickness and different limiting dimensions
Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1169-1195 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Boundary value and spectral problems for an elliptic differential equation with rapidly oscillating coefficients in a thin perforated region with rapidly changing thickness are investigated. Descriptions of asymptotic algorithms for solutions of such problems in thin regions with different limiting dimensions are combined. For a mixed inhomogeneous boundary value problem a corrector is constructed and an asymptotic estimate in the corresponding Sobolev space is established. Asymptotic bounds for eigenvalues and eigenfunctions of the Neumann spectral problems are also found. Full asymptotic expansions for the eigenvalues and eigenfunctions are constructed under certain symmetry assumptions about the structure of the thin perforated region and the coefficients of the equations. Bibliography: 21 titles.
Keywords: asymptotic approximations and expansions, thin perforated regions, elliptic boundary value and spectral problems.
@article{SM_2012_203_8_a4,
     author = {T. A. Mel'nik and A. V. Popov},
     title = {Asymptotic analysis of boundary value and spectral problems in thin perforated regions with rapidly changing thickness and different limiting dimensions},
     journal = {Sbornik. Mathematics},
     pages = {1169--1195},
     year = {2012},
     volume = {203},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_8_a4/}
}
TY  - JOUR
AU  - T. A. Mel'nik
AU  - A. V. Popov
TI  - Asymptotic analysis of boundary value and spectral problems in thin perforated regions with rapidly changing thickness and different limiting dimensions
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1169
EP  - 1195
VL  - 203
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_8_a4/
LA  - en
ID  - SM_2012_203_8_a4
ER  - 
%0 Journal Article
%A T. A. Mel'nik
%A A. V. Popov
%T Asymptotic analysis of boundary value and spectral problems in thin perforated regions with rapidly changing thickness and different limiting dimensions
%J Sbornik. Mathematics
%D 2012
%P 1169-1195
%V 203
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2012_203_8_a4/
%G en
%F SM_2012_203_8_a4
T. A. Mel'nik; A. V. Popov. Asymptotic analysis of boundary value and spectral problems in thin perforated regions with rapidly changing thickness and different limiting dimensions. Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1169-1195. http://geodesic.mathdoc.fr/item/SM_2012_203_8_a4/

[1] A. L. Gol'denveizer, “Derivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity”, J. Appl. Math. Mech., 26:4 (1962), 1000–1025 | DOI | MR | Zbl

[2] A. L. Gol'denveizer, Theory of elastic thin shells, Pergamon Press, Oxford–London–New York–Paris, 1961 | MR | MR | Zbl

[3] M. G. Dzhavadov, “Asimptotika resheniya kraevoi zadachi dlya ellipticheskikh uravnenii vtorogo poryadka v tonkikh oblastyakh”, Differents. uravneniya, 4:10 (1968), 1901–1909 | MR | Zbl

[4] S. A. Nazarov, “Struktura reshenii kraevoi zadachi dlya ellipticheskikh uravnenii v tonkikh oblastyakh”, Vestn. LGU. Ser. matem., mekh., astron., 1982, no. 2, 65–68 | MR | Zbl

[5] S. N. Leora, S. A. Nazarov, A. V. Proskura, “Derivation of limiting equations for elliptic problems in thin domains using computers”, U.S.S.R. Comput. Math. Math. Phys., 26:4 (1986), 47–58 | DOI | MR | Zbl | Zbl

[6] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR | Zbl

[7] D. Caillerie, “Thin elastic and periodic plates”, Math. Methods Appl. Sci., 6:2 (1984), 159–191 | DOI | MR | Zbl

[8] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl

[9] G. P. Panasenko, M. V. Reztsov, “Averaging a three-dimensional problem of elasticity theory in an inhomogeneous plate”, Soviet Math. Dokl., 35:3 (1987), 630–634 | MR | Zbl

[10] T. A. Melnik, “Oserednenie ellipticheskikh uravnenii, opisyvayuschikh protsessy v silno neodnorodnykh tonkikh perforovannykh oblastyakh s bystro izmenyayuscheisya tolschinoi”, Dokl. AN USSR, 10 (1991), 15–18 | MR

[11] R. V. Korn , M. Vogelius, “A new model for thin plates with rapidly varying thickness. II. A convergence proof”, Quart. Appl. Math., 43:1 (1985), 1–22 | MR | Zbl

[12] A. G. Kolpakov, “The governing equations of a thin elastic stressed beam with a periodic structure”, J. Appl. Math. Mech., 63:3 (1999), 495–504 | DOI | MR | Zbl

[13] G. A. Chechkin, E. A. Pichugina, “Weighted Korn's inequality for a thin plate with a rough surface”, Russ. J. Math. Phys., 7:3 (2000), 279–287 | MR | Zbl

[14] T. A. Mel'nik, A. V. Popov, “Asymptotic approximations of solutions to parabolic boundary value problems in thin perforated domains of rapidly varying thickness”, J. Math. Sci. (N. Y.), 162:3 (2009), 348–372 | DOI | MR

[15] S. A. Nazarov, “General averaging procedure for selfadjoint elliptic systems in many-dimensional domains, including thin ones”, St. Petersburg Math. J., 7:5 (1996), 681–748 | MR | Zbl

[16] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002

[17] O. A. Ole'inik, A. S. Shamaev, G. A. Yosifyan, Mathematical problems in elasticity and homogenization, Stud. Math. Appl., 26, North-Holland, Amsterdam, 1992 | MR | MR | Zbl | Zbl

[18] N. S. Bakhvalov, G. Panasenko, Homogenisation: Averaging processes in periodic media, Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989 | MR | MR | Zbl | Zbl

[19] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983 | MR | MR | Zbl | Zbl

[20] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer–Verlag, New York, 1985 | MR | MR | Zbl | Zbl

[21] T. A. Mel'nik, “Asymptotic expansions of eigenvalues and eigenfunctions for elliptic boundary-value problems with rapidly oscillating coefficients in a perforated cube”, J. Math. Sci., 75:3 (1995), 1646–1671 | DOI | MR | MR | Zbl