Asymptotic analysis of boundary value and spectral problems in thin perforated regions with rapidly changing thickness and different limiting dimensions
Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1169-1195

Voir la notice de l'article provenant de la source Math-Net.Ru

Boundary value and spectral problems for an elliptic differential equation with rapidly oscillating coefficients in a thin perforated region with rapidly changing thickness are investigated. Descriptions of asymptotic algorithms for solutions of such problems in thin regions with different limiting dimensions are combined. For a mixed inhomogeneous boundary value problem a corrector is constructed and an asymptotic estimate in the corresponding Sobolev space is established. Asymptotic bounds for eigenvalues and eigenfunctions of the Neumann spectral problems are also found. Full asymptotic expansions for the eigenvalues and eigenfunctions are constructed under certain symmetry assumptions about the structure of the thin perforated region and the coefficients of the equations. Bibliography: 21 titles.
Keywords: asymptotic approximations and expansions, thin perforated regions, elliptic boundary value and spectral problems.
@article{SM_2012_203_8_a4,
     author = {T. A. Mel'nik and A. V. Popov},
     title = {Asymptotic analysis of boundary value and spectral problems in thin perforated regions with rapidly changing thickness and different limiting dimensions},
     journal = {Sbornik. Mathematics},
     pages = {1169--1195},
     publisher = {mathdoc},
     volume = {203},
     number = {8},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_8_a4/}
}
TY  - JOUR
AU  - T. A. Mel'nik
AU  - A. V. Popov
TI  - Asymptotic analysis of boundary value and spectral problems in thin perforated regions with rapidly changing thickness and different limiting dimensions
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1169
EP  - 1195
VL  - 203
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_8_a4/
LA  - en
ID  - SM_2012_203_8_a4
ER  - 
%0 Journal Article
%A T. A. Mel'nik
%A A. V. Popov
%T Asymptotic analysis of boundary value and spectral problems in thin perforated regions with rapidly changing thickness and different limiting dimensions
%J Sbornik. Mathematics
%D 2012
%P 1169-1195
%V 203
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_8_a4/
%G en
%F SM_2012_203_8_a4
T. A. Mel'nik; A. V. Popov. Asymptotic analysis of boundary value and spectral problems in thin perforated regions with rapidly changing thickness and different limiting dimensions. Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1169-1195. http://geodesic.mathdoc.fr/item/SM_2012_203_8_a4/