Approximation properties of generalized Bochner-Riesz means in the Hardy spaces $H_p$, $0$
Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1151-1168
Voir la notice de l'article provenant de la source Math-Net.Ru
A test for the convergence of the generalized spherical and $\ell_1$ Bochner-Riesz means in the Hardy spaces $H_p(D^n)$, $0$, is obtained, where $D^n$ is the unit polydisc. Precise orders of the approximation
of functions by the generalized $\ell_q$ Bochner-Riesz means in terms of the $K$-functional and special moduli of smoothness are found.
Bibliography: 31 titles.
Keywords:
Hardy spaces in a polydisc, generalized Bochner-Riesz means, $K$-functional, moduli of smoothness, Bernstein-type inequalities.
@article{SM_2012_203_8_a3,
author = {Yu. S. Kolomoitsev},
title = {Approximation properties of generalized {Bochner-Riesz} means in the {Hardy} spaces $H_p$, $0<p\le 1$},
journal = {Sbornik. Mathematics},
pages = {1151--1168},
publisher = {mathdoc},
volume = {203},
number = {8},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_8_a3/}
}
TY - JOUR AU - Yu. S. Kolomoitsev TI - Approximation properties of generalized Bochner-Riesz means in the Hardy spaces $H_p$, $0 JO - Sbornik. Mathematics PY - 2012 SP - 1151 EP - 1168 VL - 203 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2012_203_8_a3/ LA - en ID - SM_2012_203_8_a3 ER -
Yu. S. Kolomoitsev. Approximation properties of generalized Bochner-Riesz means in the Hardy spaces $H_p$, $0