@article{SM_2012_203_8_a2,
author = {O. A. Zagryadskii and E. A. Kudryavtseva and D. A. Fedoseev},
title = {A generalization of {Bertrand's} theorem to surfaces of revolution},
journal = {Sbornik. Mathematics},
pages = {1112--1150},
year = {2012},
volume = {203},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_8_a2/}
}
TY - JOUR AU - O. A. Zagryadskii AU - E. A. Kudryavtseva AU - D. A. Fedoseev TI - A generalization of Bertrand's theorem to surfaces of revolution JO - Sbornik. Mathematics PY - 2012 SP - 1112 EP - 1150 VL - 203 IS - 8 UR - http://geodesic.mathdoc.fr/item/SM_2012_203_8_a2/ LA - en ID - SM_2012_203_8_a2 ER -
O. A. Zagryadskii; E. A. Kudryavtseva; D. A. Fedoseev. A generalization of Bertrand's theorem to surfaces of revolution. Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1112-1150. http://geodesic.mathdoc.fr/item/SM_2012_203_8_a2/
[1] F. C. Santos, V. Soares, A. C. Tort, An English translation of Bertrand's theorem, arXiv: 0704.2396 | Zbl
[2] G. Koenigs, “Sur les lois de force centrale fonction de la distance pour laquelle toutes les trajectoires sont algébriques”, Bull. Soc. Math. France, 17 (1889), 153–155 | MR | Zbl
[3] G. Darboux, “Sur un probléme de mécanique”, Cours de mécanique, T. Despeyrous, Vol. 2, Note XIV, Herman, Paris, 1886, 461–466
[4] G. Darboux, “Étude d'une question relative au mouvement d'un point sur une surface de révolution”, Bull. Soc. Math. France, 5 (1877), 100–113 | MR | Zbl
[5] G. Darboux, “Sur une question relative au mouvement d'un point sur une surface de révolution”, Cours de mécanique, T. Despeyrous, Vol. 2, Note XV, A. Herman, Paris, 1886, 467–482
[6] H. Liebmann, “Über die Zentralbewegung in der nicht-euklidischen Geometrie”, Leipz. Ber., 55 (1903), 146–153 | Zbl
[7] H. Liebmann, “Die Kegelschnitte und die Planetenbewegung im nichteuklidischen Raum”, Leipz. Ber., 54 (1902), 393–423 | Zbl
[8] V. Perlick, “Bertrand spacetimes”, Classical Quantum Gravity, 9:4 (1992), 1009–1021 | DOI | MR | Zbl
[9] V. V. Kozlov, A. O. Harin, “Kepler's problem in constant curvature spaces”, Celestial Mech. Dynam. Astronom., 54:4 (1992), 393–399 | DOI | MR | Zbl
[10] V. V. Kozlov, “Dynamics in spaces of constant curvature”, Moscow Univ. Math. Bull., 49:2 (1994), 21–28 | MR | Zbl
[11] A. V. Borisov, I. S. Mamaev, “Superintegrable systems on a sphere”, Regul. Chaotic Dyn., 10:3 (2005), 257–266 | DOI | MR | Zbl
[12] M. Santoprete, “Gravitational and harmonic oscillator potentials on surfaces of revolution”, J. Math. Phys., 49:4 (2008), 042903 | DOI | MR | Zbl
[13] Á. Ballesteros, A. Enciso, F. J. Herranz, O. Ragnisco, “Hamiltonian systems admitting a Runge–Lenz vector and an optimal extension of Bertrand's theorem to curved manifolds”, Comm. Math. Phys., 290:3 (2009), 1033–1049 | DOI | MR | Zbl
[14] Klassicheskaya dinamika v neevklidovykh prostranstvakh, eds. A. V. Borisov, I. S. Mamaev, In-t kompyuternykh issledovanii, M.–Izhevsk, 2004
[15] A. V. Schepetilov, Analiz i mekhanika na dvukhtochechno-odnorodnykh rimanovykh prostranstvakh, RKhD, M.–Izhevsk, 2008
[16] N. I. Lobachevskii, “Novye nachala geometrii s polnoi teoriei parallelnykh”, Polnoe sobranie sochinenii. Sochineniya po geometrii, v. II, GIITL, M.–L., 1949, 158–159; Классическая динамика в неевклидовых пространствах, Ин-т компьютерных исследований, М.–Ижевск, 2004, 19–21
[17] W. Bolyai, J. Bolyai, Geometrische Untersuchungen, Teubner, Leipzig, 1913 | Zbl
[18] P. Serret, Théorie nouvelle géométrique et mécanique des lignes E double courbure, Librave de Mallet-Bachelier, Paris, 1860
[19] F. Schering, “Die Schwerkraft im Gaussischen Raum”, Gött. Nachr., 15 (1870), 311–321 | Zbl
[20] R. Lipshitz, “Extension of the planet-problem to a space of $n$ dimensions and of constant survature”, Quart. J. Mech. Appl. Math., 12 (1873), 349–370 | Zbl
[21] W. Killing, “Die Mechanik in den nicht-Euklidischen Raumformen”, J. Reine Angew. Math., 98 (1885), 1–48 | Zbl
[22] C. Neumann, “Ausdehnung der Kepler'schen Gesetze auf der Fall, dass die Bewegung auf einer Kugelfläche stattfindet”, Gessellschaft der Wissenschaften, Math. Phys. Klasse, 38 (1886), 1–2
[23] P. W. Higgs, “Dynamical symmetries in a spherical geometry. I”, J. Phys. A, 12:3 (1979), 309–323 | DOI | MR | Zbl
[24] J. J. Slawianowski, “Bertrand systems on $\operatorname{SO}(3,R)$ and $\operatorname{SU}(2)$”, Bull. Acad. Polon. Sci. Sér. Sci. Phys. Astronom., 28:2 (1980), 83–94 | MR | Zbl
[25] M. Ikeda, N. Katayama, “On generalization of Bertrand's theorem to spaces of constant curvature”, Tensor (N.S.), 38 (1982), 37–40 | MR | Zbl
[26] Y. Tikochinsky, “A simplified proof of Bertrand's theorem”, Amer. J. Phys., 56:12 (1988), 1073–1075 | DOI | MR
[27] A. V. Bolsinov, V. V. Kozlov, A. T. Fomenko, “The Maupertuis principle and geodesic flows on the sphere arising from integrable cases in the dynamics of a rigid body”, Russian Math. Surveys, 50:3 (1995), 473–501 | DOI | MR | Zbl
[28] A. T. Fomenko, “A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds”, Funct. Anal. Appl., 25:4 (1991), 262–272 | DOI | MR | Zbl | Zbl
[29] T. N. Nguen, A. T. Fomenko, “Topological classification of integrable non-degenerate Hamiltonians on a constant energy three-dimensional sphere”, Russian Math. Surveys, 45:6 (1990), 109–135 | DOI | MR | Zbl
[30] A. T. Fomenko, “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl
[31] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | MR | Zbl
[32] A. L. Besse, Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb., 93, Springer-Verlag, Berlin–New York, 1978 | MR | MR | Zbl
[33] V. S. Matveev, “On projectively equivalent metrics near points of bifurcation”, Topological methods in the theory of integrable systems, Camb. Sci. Publ., Cambridge, 2006, 215–240 | MR | Zbl