A generalization of Bertrand's theorem to surfaces of revolution
Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1112-1150
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove a generalization of Bertrand's theorem to the case of abstract surfaces of revolution that have no ‘equators’. We prove a criterion for exactly two central potentials to exist on this type of surface (up to an additive and a multiplicative constant) for which all bounded orbits are closed and there is a bounded nonsingular noncircular orbit. We prove a criterion for the existence of exactly one such potential. We study the geometry and classification of the corresponding surfaces with the aforementioned pair of potentials (gravitational and oscillatory) or unique potential (oscillatory). We show that potentials of the required form do not exist on surfaces that do not belong to any of the classes described.
Bibliography: 33 titles.
Keywords:
Bertrand's theorem, inverse problem of dynamics, surface of revolution, motion in a central field, closed orbits.
@article{SM_2012_203_8_a2,
author = {O. A. Zagryadskii and E. A. Kudryavtseva and D. A. Fedoseev},
title = {A generalization of {Bertrand's} theorem to surfaces of revolution},
journal = {Sbornik. Mathematics},
pages = {1112--1150},
publisher = {mathdoc},
volume = {203},
number = {8},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_8_a2/}
}
TY - JOUR AU - O. A. Zagryadskii AU - E. A. Kudryavtseva AU - D. A. Fedoseev TI - A generalization of Bertrand's theorem to surfaces of revolution JO - Sbornik. Mathematics PY - 2012 SP - 1112 EP - 1150 VL - 203 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2012_203_8_a2/ LA - en ID - SM_2012_203_8_a2 ER -
O. A. Zagryadskii; E. A. Kudryavtseva; D. A. Fedoseev. A generalization of Bertrand's theorem to surfaces of revolution. Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1112-1150. http://geodesic.mathdoc.fr/item/SM_2012_203_8_a2/