A generalization of Bertrand's theorem to surfaces of revolution
Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1112-1150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove a generalization of Bertrand's theorem to the case of abstract surfaces of revolution that have no ‘equators’. We prove a criterion for exactly two central potentials to exist on this type of surface (up to an additive and a multiplicative constant) for which all bounded orbits are closed and there is a bounded nonsingular noncircular orbit. We prove a criterion for the existence of exactly one such potential. We study the geometry and classification of the corresponding surfaces with the aforementioned pair of potentials (gravitational and oscillatory) or unique potential (oscillatory). We show that potentials of the required form do not exist on surfaces that do not belong to any of the classes described. Bibliography: 33 titles.
Keywords: Bertrand's theorem, inverse problem of dynamics, surface of revolution, motion in a central field, closed orbits.
@article{SM_2012_203_8_a2,
     author = {O. A. Zagryadskii and E. A. Kudryavtseva and D. A. Fedoseev},
     title = {A generalization of {Bertrand's} theorem to surfaces of revolution},
     journal = {Sbornik. Mathematics},
     pages = {1112--1150},
     year = {2012},
     volume = {203},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_8_a2/}
}
TY  - JOUR
AU  - O. A. Zagryadskii
AU  - E. A. Kudryavtseva
AU  - D. A. Fedoseev
TI  - A generalization of Bertrand's theorem to surfaces of revolution
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1112
EP  - 1150
VL  - 203
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_8_a2/
LA  - en
ID  - SM_2012_203_8_a2
ER  - 
%0 Journal Article
%A O. A. Zagryadskii
%A E. A. Kudryavtseva
%A D. A. Fedoseev
%T A generalization of Bertrand's theorem to surfaces of revolution
%J Sbornik. Mathematics
%D 2012
%P 1112-1150
%V 203
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2012_203_8_a2/
%G en
%F SM_2012_203_8_a2
O. A. Zagryadskii; E. A. Kudryavtseva; D. A. Fedoseev. A generalization of Bertrand's theorem to surfaces of revolution. Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1112-1150. http://geodesic.mathdoc.fr/item/SM_2012_203_8_a2/

[1] F. C. Santos, V. Soares, A. C. Tort, An English translation of Bertrand's theorem, arXiv: 0704.2396 | Zbl

[2] G. Koenigs, “Sur les lois de force centrale fonction de la distance pour laquelle toutes les trajectoires sont algébriques”, Bull. Soc. Math. France, 17 (1889), 153–155 | MR | Zbl

[3] G. Darboux, “Sur un probléme de mécanique”, Cours de mécanique, T. Despeyrous, Vol. 2, Note XIV, Herman, Paris, 1886, 461–466

[4] G. Darboux, “Étude d'une question relative au mouvement d'un point sur une surface de révolution”, Bull. Soc. Math. France, 5 (1877), 100–113 | MR | Zbl

[5] G. Darboux, “Sur une question relative au mouvement d'un point sur une surface de révolution”, Cours de mécanique, T. Despeyrous, Vol. 2, Note XV, A. Herman, Paris, 1886, 467–482

[6] H. Liebmann, “Über die Zentralbewegung in der nicht-euklidischen Geometrie”, Leipz. Ber., 55 (1903), 146–153 | Zbl

[7] H. Liebmann, “Die Kegelschnitte und die Planetenbewegung im nichteuklidischen Raum”, Leipz. Ber., 54 (1902), 393–423 | Zbl

[8] V. Perlick, “Bertrand spacetimes”, Classical Quantum Gravity, 9:4 (1992), 1009–1021 | DOI | MR | Zbl

[9] V. V. Kozlov, A. O. Harin, “Kepler's problem in constant curvature spaces”, Celestial Mech. Dynam. Astronom., 54:4 (1992), 393–399 | DOI | MR | Zbl

[10] V. V. Kozlov, “Dynamics in spaces of constant curvature”, Moscow Univ. Math. Bull., 49:2 (1994), 21–28 | MR | Zbl

[11] A. V. Borisov, I. S. Mamaev, “Superintegrable systems on a sphere”, Regul. Chaotic Dyn., 10:3 (2005), 257–266 | DOI | MR | Zbl

[12] M. Santoprete, “Gravitational and harmonic oscillator potentials on surfaces of revolution”, J. Math. Phys., 49:4 (2008), 042903 | DOI | MR | Zbl

[13] Á. Ballesteros, A. Enciso, F. J. Herranz, O. Ragnisco, “Hamiltonian systems admitting a Runge–Lenz vector and an optimal extension of Bertrand's theorem to curved manifolds”, Comm. Math. Phys., 290:3 (2009), 1033–1049 | DOI | MR | Zbl

[14] Klassicheskaya dinamika v neevklidovykh prostranstvakh, eds. A. V. Borisov, I. S. Mamaev, In-t kompyuternykh issledovanii, M.–Izhevsk, 2004

[15] A. V. Schepetilov, Analiz i mekhanika na dvukhtochechno-odnorodnykh rimanovykh prostranstvakh, RKhD, M.–Izhevsk, 2008

[16] N. I. Lobachevskii, “Novye nachala geometrii s polnoi teoriei parallelnykh”, Polnoe sobranie sochinenii. Sochineniya po geometrii, v. II, GIITL, M.–L., 1949, 158–159; Классическая динамика в неевклидовых пространствах, Ин-т компьютерных исследований, М.–Ижевск, 2004, 19–21

[17] W. Bolyai, J. Bolyai, Geometrische Untersuchungen, Teubner, Leipzig, 1913 | Zbl

[18] P. Serret, Théorie nouvelle géométrique et mécanique des lignes E double courbure, Librave de Mallet-Bachelier, Paris, 1860

[19] F. Schering, “Die Schwerkraft im Gaussischen Raum”, Gött. Nachr., 15 (1870), 311–321 | Zbl

[20] R. Lipshitz, “Extension of the planet-problem to a space of $n$ dimensions and of constant survature”, Quart. J. Mech. Appl. Math., 12 (1873), 349–370 | Zbl

[21] W. Killing, “Die Mechanik in den nicht-Euklidischen Raumformen”, J. Reine Angew. Math., 98 (1885), 1–48 | Zbl

[22] C. Neumann, “Ausdehnung der Kepler'schen Gesetze auf der Fall, dass die Bewegung auf einer Kugelfläche stattfindet”, Gessellschaft der Wissenschaften, Math. Phys. Klasse, 38 (1886), 1–2

[23] P. W. Higgs, “Dynamical symmetries in a spherical geometry. I”, J. Phys. A, 12:3 (1979), 309–323 | DOI | MR | Zbl

[24] J. J. Slawianowski, “Bertrand systems on $\operatorname{SO}(3,R)$ and $\operatorname{SU}(2)$”, Bull. Acad. Polon. Sci. Sér. Sci. Phys. Astronom., 28:2 (1980), 83–94 | MR | Zbl

[25] M. Ikeda, N. Katayama, “On generalization of Bertrand's theorem to spaces of constant curvature”, Tensor (N.S.), 38 (1982), 37–40 | MR | Zbl

[26] Y. Tikochinsky, “A simplified proof of Bertrand's theorem”, Amer. J. Phys., 56:12 (1988), 1073–1075 | DOI | MR

[27] A. V. Bolsinov, V. V. Kozlov, A. T. Fomenko, “The Maupertuis principle and geodesic flows on the sphere arising from integrable cases in the dynamics of a rigid body”, Russian Math. Surveys, 50:3 (1995), 473–501 | DOI | MR | Zbl

[28] A. T. Fomenko, “A topological invariant which roughly classifies integrable strictly nondegenerate Hamiltonians on four-dimensional symplectic manifolds”, Funct. Anal. Appl., 25:4 (1991), 262–272 | DOI | MR | Zbl | Zbl

[29] T. N. Nguen, A. T. Fomenko, “Topological classification of integrable non-degenerate Hamiltonians on a constant energy three-dimensional sphere”, Russian Math. Surveys, 45:6 (1990), 109–135 | DOI | MR | Zbl

[30] A. T. Fomenko, “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl

[31] E. A. Kudryavtseva, I. M. Nikonov, A. T. Fomenko, “Maximally symmetric cell decompositions of surfaces and their coverings”, Sb. Math., 199:9 (2008), 1263–1353 | DOI | MR | Zbl

[32] A. L. Besse, Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb., 93, Springer-Verlag, Berlin–New York, 1978 | MR | MR | Zbl

[33] V. S. Matveev, “On projectively equivalent metrics near points of bifurcation”, Topological methods in the theory of integrable systems, Camb. Sci. Publ., Cambridge, 2006, 215–240 | MR | Zbl