On the convergence of difference schemes for the equations of ocean dynamics
Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1091-1111
Voir la notice de l'article provenant de la source Math-Net.Ru
The difference scheme which approximates the equations of large-scale ocean dynamics in a unit cube to the second degree in the space variables is investigated. It is shown that the solutions converge to the solution of the differential problem. Namely, under the assumption that the solution is sufficiently smooth it is proved that
$$
\max_{0\le m\le M}\|{\mathbf u}(m\tau)-{\mathbf v}^m\|=O(\tau+h^{3/2}),
\qquad
M\tau=T,
$$
where $\|\cdot\|$ is the grid $L_2$-norm with respect to the space variables,
$\mathbf v$ is the solution of the grid problem, and $\mathbf u$ is the solution of the differential problem.
Bibliography: 7 titles.
Keywords:
primitive equations, equations of ocean dynamics, nonlinear partial differential equations, finite-difference scheme
Mots-clés : convergence.
Mots-clés : convergence.
@article{SM_2012_203_8_a1,
author = {A. V. Drutsa and G. M. Kobel'kov},
title = {On the convergence of difference schemes for the equations of ocean dynamics},
journal = {Sbornik. Mathematics},
pages = {1091--1111},
publisher = {mathdoc},
volume = {203},
number = {8},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_8_a1/}
}
TY - JOUR AU - A. V. Drutsa AU - G. M. Kobel'kov TI - On the convergence of difference schemes for the equations of ocean dynamics JO - Sbornik. Mathematics PY - 2012 SP - 1091 EP - 1111 VL - 203 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2012_203_8_a1/ LA - en ID - SM_2012_203_8_a1 ER -
A. V. Drutsa; G. M. Kobel'kov. On the convergence of difference schemes for the equations of ocean dynamics. Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1091-1111. http://geodesic.mathdoc.fr/item/SM_2012_203_8_a1/