Mots-clés : convergence.
@article{SM_2012_203_8_a1,
author = {A. V. Drutsa and G. M. Kobel'kov},
title = {On the convergence of difference schemes for the equations of ocean dynamics},
journal = {Sbornik. Mathematics},
pages = {1091--1111},
year = {2012},
volume = {203},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_8_a1/}
}
A. V. Drutsa; G. M. Kobel'kov. On the convergence of difference schemes for the equations of ocean dynamics. Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1091-1111. http://geodesic.mathdoc.fr/item/SM_2012_203_8_a1/
[1] V. L. Zotov, “A difference scheme for a set of equations of the atmosphere dynamics”, Moscow Univ. Comput. Math. Cybernet., 1988, no. 1, 14–22 | MR | Zbl
[2] G. M. Kobelkov, “Global existence of a solution to the ocean dynamics equations”, Dokl. Math., 73:2 (2006), 296–298 | DOI | MR
[3] G. M. Kobelkov, “Existence of a solution “in the large” for the 3D large-scale ocean dynamics equations”, C. R. Math. Acad. Sci. Paris, 343:4 (2006), 283–286 | DOI | MR | Zbl
[4] G. M. Kobelkov, “Existence of a solution “in the large” for ocean dynamics equations”, J. Math. Fluid Mech., 9:4 (2007), 588–610 | DOI | MR | Zbl
[5] A. V. Drutsa, “Existence “in the large” of a solution to primitive equations in a domain with uneven bottom”, Russian J. Numer. Anal. Math. Modelling, 24:6 (2009), 515–542 | DOI | MR | Zbl
[6] C. Cao, E. S. Titi, “Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics”, Ann. of Math. (2), 166:1 (2007), 245–267 | DOI | MR | Zbl
[7] V. I. Lebedev, “Metod konechnykh setok dlya uravnenii tipa S. L. Soboleva”, Dokl. AN SSSR, 114:6 (1957), 1166–1169 | MR | Zbl