On spaces of functions of smoothness zero
Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1077-1090 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the new spaces $\overline B{}_{p,q}^0$ of functions of smoothness zero defined on the $n$-dimensional Euclidean space $\mathbb R^n$ or on a subdomain $G$ of $\mathbb R^n$. These spaces are compared with the spaces $B_{p,q}^0(\mathbb R^n)$ and $\mathrm{bmo}(\mathbb R^n)$. The embedding theorems for Sobolev spaces are refined in terms of the space $\overline B{}_{p,q}^0$ with the limiting exponent. Bibliography: 8 titles.
Keywords: spaces of differentiable functions, embedding theorems
Mots-clés : Sobolev spaces.
@article{SM_2012_203_8_a0,
     author = {O. V. Besov},
     title = {On spaces of functions of smoothness zero},
     journal = {Sbornik. Mathematics},
     pages = {1077--1090},
     year = {2012},
     volume = {203},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_8_a0/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - On spaces of functions of smoothness zero
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1077
EP  - 1090
VL  - 203
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_8_a0/
LA  - en
ID  - SM_2012_203_8_a0
ER  - 
%0 Journal Article
%A O. V. Besov
%T On spaces of functions of smoothness zero
%J Sbornik. Mathematics
%D 2012
%P 1077-1090
%V 203
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2012_203_8_a0/
%G en
%F SM_2012_203_8_a0
O. V. Besov. On spaces of functions of smoothness zero. Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1077-1090. http://geodesic.mathdoc.fr/item/SM_2012_203_8_a0/

[1] H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland Math. Library, 18, North-Holland, Amsterdam–New York, 1978 | MR | MR | Zbl | Zbl

[2] H. Triebel, Theory of function spaces, Monogr. Math., 78, Birkhaüser, Basel–Boston–Stuttgart, 1983 | MR | MR | Zbl | Zbl

[3] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426 | DOI | MR | Zbl

[4] W. Sickel, H. Triebel, “Holder inequalities and sharp embeddings in function spaces of $B_{pq}^s$ and $F_{pq}^s$ type”, Z. Anal. Anwendungen, 14:1 (1995), 105–140 | MR | Zbl

[5] O. V. Besov, V. P. Il'in, S. M. Nikol'skiĭ, Integral representations of functions and imbedding theorems, v. I, II, Winston, Washington, DC; Wiley, New York–Toronto, ON–London, 1979 | MR | MR | Zbl | Zbl

[6] V. A. Solonnikov, “Inequalities for functions of the classes $\vec W_{p}(R_n)$”, J. Soviet Math., 3 (1975), 549–564 | MR | Zbl | Zbl

[7] A. V. Besov, “Imbeddings of an anisotropic Sobolev space for a domain with the flexible horn condition”, Proc. Steklov Inst. Math., 181 (1989), 1–13 | MR | Zbl | Zbl

[8] V. I. Kolyada, “On relations between moduli of continuity in different metrics”, Proc. Steklov Inst. Math., 181 (1989), 127–148 | MR | Zbl