Mots-clés : Sobolev spaces.
@article{SM_2012_203_8_a0,
author = {O. V. Besov},
title = {On spaces of functions of smoothness zero},
journal = {Sbornik. Mathematics},
pages = {1077--1090},
year = {2012},
volume = {203},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_8_a0/}
}
O. V. Besov. On spaces of functions of smoothness zero. Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1077-1090. http://geodesic.mathdoc.fr/item/SM_2012_203_8_a0/
[1] H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland Math. Library, 18, North-Holland, Amsterdam–New York, 1978 | MR | MR | Zbl | Zbl
[2] H. Triebel, Theory of function spaces, Monogr. Math., 78, Birkhaüser, Basel–Boston–Stuttgart, 1983 | MR | MR | Zbl | Zbl
[3] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426 | DOI | MR | Zbl
[4] W. Sickel, H. Triebel, “Holder inequalities and sharp embeddings in function spaces of $B_{pq}^s$ and $F_{pq}^s$ type”, Z. Anal. Anwendungen, 14:1 (1995), 105–140 | MR | Zbl
[5] O. V. Besov, V. P. Il'in, S. M. Nikol'skiĭ, Integral representations of functions and imbedding theorems, v. I, II, Winston, Washington, DC; Wiley, New York–Toronto, ON–London, 1979 | MR | MR | Zbl | Zbl
[6] V. A. Solonnikov, “Inequalities for functions of the classes $\vec W_{p}(R_n)$”, J. Soviet Math., 3 (1975), 549–564 | MR | Zbl | Zbl
[7] A. V. Besov, “Imbeddings of an anisotropic Sobolev space for a domain with the flexible horn condition”, Proc. Steklov Inst. Math., 181 (1989), 1–13 | MR | Zbl | Zbl
[8] V. I. Kolyada, “On relations between moduli of continuity in different metrics”, Proc. Steklov Inst. Math., 181 (1989), 127–148 | MR | Zbl