On spaces of functions of smoothness zero
Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1077-1090
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is concerned with the new spaces $\overline B{}_{p,q}^0$ of functions of smoothness zero defined on the $n$-dimensional Euclidean space $\mathbb R^n$ or on a subdomain $G$ of $\mathbb R^n$. These spaces are compared with the spaces $B_{p,q}^0(\mathbb R^n)$ and $\mathrm{bmo}(\mathbb R^n)$. The embedding theorems for Sobolev spaces are refined in terms of the space $\overline B{}_{p,q}^0$ with the limiting exponent.
Bibliography: 8 titles.
Keywords:
spaces of differentiable functions, embedding theorems
Mots-clés : Sobolev spaces.
Mots-clés : Sobolev spaces.
@article{SM_2012_203_8_a0,
author = {O. V. Besov},
title = {On spaces of functions of smoothness zero},
journal = {Sbornik. Mathematics},
pages = {1077--1090},
publisher = {mathdoc},
volume = {203},
number = {8},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_8_a0/}
}
O. V. Besov. On spaces of functions of smoothness zero. Sbornik. Mathematics, Tome 203 (2012) no. 8, pp. 1077-1090. http://geodesic.mathdoc.fr/item/SM_2012_203_8_a0/