Criteria for compactness in $L^p$-spaces, $p\geqslant0$
Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 1045-1064

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper puts forward new compactness criteria for spaces of summable and measurable functions on a metric space with measure satisfying the doubling condition. These criteria are formulated in terms of either local smoothness inequalities or maximal operators that measure local smoothness. Bibliography: 28 titles.
Keywords: compactness, total boundedness, space of summable functions, space of measurable functions, maximal operators, local smoothness.
@article{SM_2012_203_7_a5,
     author = {V. G. Krotov},
     title = {Criteria for compactness in $L^p$-spaces, $p\geqslant0$},
     journal = {Sbornik. Mathematics},
     pages = {1045--1064},
     publisher = {mathdoc},
     volume = {203},
     number = {7},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_7_a5/}
}
TY  - JOUR
AU  - V. G. Krotov
TI  - Criteria for compactness in $L^p$-spaces, $p\geqslant0$
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1045
EP  - 1064
VL  - 203
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_7_a5/
LA  - en
ID  - SM_2012_203_7_a5
ER  - 
%0 Journal Article
%A V. G. Krotov
%T Criteria for compactness in $L^p$-spaces, $p\geqslant0$
%J Sbornik. Mathematics
%D 2012
%P 1045-1064
%V 203
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_7_a5/
%G en
%F SM_2012_203_7_a5
V. G. Krotov. Criteria for compactness in $L^p$-spaces, $p\geqslant0$. Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 1045-1064. http://geodesic.mathdoc.fr/item/SM_2012_203_7_a5/