Criteria for compactness in $L^p$-spaces, $p\geqslant0$
Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 1045-1064 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper puts forward new compactness criteria for spaces of summable and measurable functions on a metric space with measure satisfying the doubling condition. These criteria are formulated in terms of either local smoothness inequalities or maximal operators that measure local smoothness. Bibliography: 28 titles.
Keywords: compactness, total boundedness, space of summable functions, space of measurable functions, maximal operators, local smoothness.
@article{SM_2012_203_7_a5,
     author = {V. G. Krotov},
     title = {Criteria for compactness in $L^p$-spaces, $p\geqslant0$},
     journal = {Sbornik. Mathematics},
     pages = {1045--1064},
     year = {2012},
     volume = {203},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_7_a5/}
}
TY  - JOUR
AU  - V. G. Krotov
TI  - Criteria for compactness in $L^p$-spaces, $p\geqslant0$
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1045
EP  - 1064
VL  - 203
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_7_a5/
LA  - en
ID  - SM_2012_203_7_a5
ER  - 
%0 Journal Article
%A V. G. Krotov
%T Criteria for compactness in $L^p$-spaces, $p\geqslant0$
%J Sbornik. Mathematics
%D 2012
%P 1045-1064
%V 203
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2012_203_7_a5/
%G en
%F SM_2012_203_7_a5
V. G. Krotov. Criteria for compactness in $L^p$-spaces, $p\geqslant0$. Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 1045-1064. http://geodesic.mathdoc.fr/item/SM_2012_203_7_a5/

[1] N. Dunford, J. T. Schwartz, Linear operators. I. General theory., Pure Appl. Math., 7, Intersci. Publ., New York–London, 1958 | MR | MR | Zbl

[2] M. Riesz, “Sur les ensembles compacts de fonctions sommables”, Acta Sci. Math (Szeged), 6:1 (1933), 136–142 | Zbl

[3] M. Tsuji, “On the compactness of space $L^p$ ($p>0$) and its application to integral equations”, Kodai Math. Sem. Rep., 3:1–2 (1951), 33–36 | DOI | MR | Zbl

[4] A. N. Kolmogoroff, “Über Kompaktheit der Funktionenmengen bei der Konvergenz im Mittel”, Nachr. Ges. Wiss. Göttingen, 9 (1931), 60–63 | Zbl

[5] H. Hanche-Olsen, H. Holden, “The Kolmogorov–Riesz compactness theorem”, Expo. Math., 28:4 (2010), 385–394 | DOI | MR | Zbl

[6] A. Kałamajska, “On compactness of embedding for Sobolev spaces defined on metric spaces”, Ann. Acad. Sci. Fenn. Math., 24:1 (1999), 123–132 | MR | Zbl

[7] V. I. Bogachev, Osnovy teorii mery, v. 1, RKhD, M.–Izhevsk, 2003

[8] L. A. Lusternik, V. J. Sobolev, Elements of functional analysis, Hindustan Publ., Delhi, 1971 | MR | MR | Zbl | Zbl

[9] M. Fréchet, “Sur les ensembles compacts de fonctions mesurables”, Fund. Math., 9 (1927), 25–32 | Zbl

[10] E. H. Hanson, “A note on compactness”, Bull. Amer. Math. Soc., 39:6 (1933), 397–400 | DOI | MR | Zbl

[11] V. G. Krotov, “Quantitative form of the Luzin $C$-property”, Ukrainian Math. J., 62:3 (2010), 441–451 | DOI | Zbl

[12] G. David, S. Semmes, Fractured fractals and broken dreams. Self-similar geometry through metric and measure, Oxford Lecture Ser. Math. Appl., 7, Clarendon Press, Oxford, 1997 | MR | Zbl

[13] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, Berlin, 2001 | MR | Zbl

[14] A. P. Calderón, “Estimates for singular integral operators in terms of maximal functions”, Studia Math., 44:3 (1972), 563–582 | MR | Zbl

[15] A. P. Calderón, R. Scott, “Sobolev type inequalities for $p>0$”, Studia Math., 62:1 (1978), 75–92 | MR | Zbl

[16] R. A. DeVore, R. C. Sharpley, “Maximal functions measuring smoothness”, Mem. Amer. Math. Soc., 47, no. 293, Amer. Math. Soc., Providence, RI, 1984 | MR | Zbl

[17] K. I. Oskolkov, “Approximation properties of summable functions on sets of full measure”, Math. USSR-Sb., 32:4 (1977), 489–514 | DOI | MR | Zbl | Zbl

[18] V. I. Kolyada, “Estimates of maximal functions connected with local smoothness”, Soviet Math. Dokl., 35:2 (1987), 345–348 | MR | Zbl

[19] V. I. Kolyada, “Estimates of maximal functions measuring local smoothness”, Anal. Math., 25:1 (1999), 277–300 | DOI | MR | Zbl

[20] D. Yang, “New characterizations of Hajłasz–Sobolev spaces on metric spaces”, Sci. China Ser. A, 46:5 (2003), 675–689 | DOI | MR | Zbl

[21] I. A. Ivanishko, “Otsenki maksimalnykh funktsii Kalderona–Kolyady na prostranstvakh odnorodnogo tipa”, Tr. In-ta matem., 12:1 (2004), 64–67

[22] V. G. Krotov, “Weighted $L^p$-inequalities for sharp-maximal functions on metric measure spaces”, J. Contemp. Math. Anal., 41:2 (2006), 22–38 | MR

[23] I. A. Ivanishko, V. G. Krotov, “Obobschennoe neravenstvo Puankare–Soboleva na metricheskikh prostranstvakh”, Tr. In-ta matem., 14:1 (2006), 51–61

[24] I. A. Ivanishko, V. G. Krotov, “Compactness of embeddings of Sobolev type on metric measure spaces”, Math. Notes, 86:5–6 (2009), 775–788 | DOI | MR | Zbl

[25] I. A. Ivanishko, “Generalized Sobolev classes on metric measure spaces”, Math. Notes, 77:5–6 (2005), 865–869 | DOI | MR | Zbl

[26] J. D. Tamarkin, “On the compactness of the space $L_p$”, Bull. Amer. Math. Soc., 38:2 (1932), 79–84 | DOI | MR | Zbl

[27] A. Tulajkov, “Zur Kompaktheit im Raum $L_p$ für $p=1$”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. I, 39 (1933), 167–170 | Zbl

[28] P. L. Ul'yanov, “Representation of functions by series and classes $\varphi(L)$”, Russian Math. Surveys, 27:2 (1972), 1–54 | DOI | MR | Zbl