Criteria for compactness in $L^p$-spaces, $p\geqslant0$
Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 1045-1064
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper puts forward new compactness criteria for spaces of summable and measurable functions on a metric space with measure satisfying the doubling condition. These criteria are formulated in terms of either local smoothness inequalities or maximal operators that measure local smoothness.
Bibliography: 28 titles.
Keywords:
compactness, total boundedness, space of summable functions, space of measurable functions, maximal operators, local smoothness.
@article{SM_2012_203_7_a5,
author = {V. G. Krotov},
title = {Criteria for compactness in $L^p$-spaces, $p\geqslant0$},
journal = {Sbornik. Mathematics},
pages = {1045--1064},
publisher = {mathdoc},
volume = {203},
number = {7},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_7_a5/}
}
V. G. Krotov. Criteria for compactness in $L^p$-spaces, $p\geqslant0$. Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 1045-1064. http://geodesic.mathdoc.fr/item/SM_2012_203_7_a5/