A weak zero-one law for~sequences of random distance graphs
Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 1012-1044
Voir la notice de l'article provenant de la source Math-Net.Ru
We study zero-one laws for properties of random distance graphs. Properties written in a first-order language are considered. For $p(N)$ such that $pN^{\alpha}\to\infty$ as $N\to\infty$, and $(1-\nobreak p)N^{\alpha}\to\infty$ as $N\to\infty$ for any $\alpha>0$, we succeed in refuting the law. In this connection, we consider a weak zero-one $j$-law. For this law, we obtain results for random distance graphs which are similar to the assertions concerning the classical zero-one law for random graphs.
Bibliography: 18 titles.
Keywords:
zero-one laws, first-order language, random graphs, distance graphs, Ehrenfeucht game.
@article{SM_2012_203_7_a4,
author = {M. E. Zhukovskii},
title = {A weak zero-one law for~sequences of random distance graphs},
journal = {Sbornik. Mathematics},
pages = {1012--1044},
publisher = {mathdoc},
volume = {203},
number = {7},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2012_203_7_a4/}
}
M. E. Zhukovskii. A weak zero-one law for~sequences of random distance graphs. Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 1012-1044. http://geodesic.mathdoc.fr/item/SM_2012_203_7_a4/