A weak zero-one law for~sequences of random distance graphs
Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 1012-1044

Voir la notice de l'article provenant de la source Math-Net.Ru

We study zero-one laws for properties of random distance graphs. Properties written in a first-order language are considered. For $p(N)$ such that $pN^{\alpha}\to\infty$ as $N\to\infty$, and $(1-\nobreak p)N^{\alpha}\to\infty$ as $N\to\infty$ for any $\alpha>0$, we succeed in refuting the law. In this connection, we consider a weak zero-one $j$-law. For this law, we obtain results for random distance graphs which are similar to the assertions concerning the classical zero-one law for random graphs. Bibliography: 18 titles.
Keywords: zero-one laws, first-order language, random graphs, distance graphs, Ehrenfeucht game.
@article{SM_2012_203_7_a4,
     author = {M. E. Zhukovskii},
     title = {A weak zero-one law for~sequences of random distance graphs},
     journal = {Sbornik. Mathematics},
     pages = {1012--1044},
     publisher = {mathdoc},
     volume = {203},
     number = {7},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2012_203_7_a4/}
}
TY  - JOUR
AU  - M. E. Zhukovskii
TI  - A weak zero-one law for~sequences of random distance graphs
JO  - Sbornik. Mathematics
PY  - 2012
SP  - 1012
EP  - 1044
VL  - 203
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2012_203_7_a4/
LA  - en
ID  - SM_2012_203_7_a4
ER  - 
%0 Journal Article
%A M. E. Zhukovskii
%T A weak zero-one law for~sequences of random distance graphs
%J Sbornik. Mathematics
%D 2012
%P 1012-1044
%V 203
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2012_203_7_a4/
%G en
%F SM_2012_203_7_a4
M. E. Zhukovskii. A weak zero-one law for~sequences of random distance graphs. Sbornik. Mathematics, Tome 203 (2012) no. 7, pp. 1012-1044. http://geodesic.mathdoc.fr/item/SM_2012_203_7_a4/